Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials

Philipp Krähenbühl and Vladlen Koltun
Stanford University

Presenter: Yuan-Ting Hu
Conditional Random Field (CRF)

\[E(x|I) = \sum_i \phi_u(x_i|I) + \sum_i \sum_{j \in \partial i} \phi_p(x_i, x_j|I) \]

Unary term Pairwise term

• \(X, I \) : random fields
• Application:
 • Image segmentation: achieve state-of-the-art performance (in 2011)
Image Segmentation

• Example: semantic image segmentation

Input

Output

bench

road

grass

tree
CRF for Image Segmentation

\[E(x|I) = \sum_i \phi_u(x_i|I) + \sum_i \sum_{j \in \partial i} \phi_p(x_i, x_j|I) \]

Unary term \hspace{2cm} Pairwise term

• \(X\): a random field defined over a set of variables \(\{X_1, \ldots, X_N\}\)
 • Label of pixels (grass, bench, tree,..)

• \(I\): a random field defined over a set of variables \(\{I_1, \ldots, I_N\}\)
 • Image (observation)
CRF for Image Segmentation

\[E(x) = \sum_i \psi_u(x_i) + \sum_i \sum_{j \in \partial i} \psi_p(x_i, x_j) \]

- **Unary term**
 - Trained on dataset
CRF for Image Segmentation

\[E(x) = \sum_{i} \psi_u(x_i) + \sum_{i} \sum_{j \in \partial i} \psi_p(x_i, x_j) \]

- **Unary term**
- **Pairwise term**

- **Pairwise term**
 - Impose consistency of the labeling
 - Defined over neighboring pixels

\[\psi_p(x_i, x_j) = \mu(x_i, x_j) \sum_{m=1}^{K} w^{(m)} k^{(m)}(f_i, f_j) \]
CRF for Image Segmentation

\[E(x) = \sum_i \psi_u(x_i) + \sum_i \sum_{j \in \partial i} \psi_p(x_i, x_j) \]

- Unary term
- Pairwise term

• Pairwise term

\[\psi_p(x_i, x_j) = \mu(x_i, x_j) \sum_{m=1}^{K} w^{(m)} k^{(m)}(f_i, f_j) \]

- \(k^{(m)}(f_i, f_j) \) is a Gaussian kernel
- \(f_i, f_j \) is the feature vectors for pixel i and j, e.g., color intensities, ...
- \(w^{(m)} \) is the weight of the m-th kernel
- \(\mu(x_i, x_j) \) is the label compatibility function
CRF for Image Segmentation

\[E(x|I) = \sum_i \phi_u(x_i|I) + \sum_i \sum_{j \in \partial i} \phi_p(x_i, x_j|I) \]

- Unary term
- Pairwise term

- Neighboring pixels
- Local connections
- May not capture the sharp boundaries
Grid CRF for Image Segmentation

- Local connections
- May not capture the sharp boundaries
Fully connected CRF for Image Segmentation

- Fully connected CRF
 - Every node is connected to every other node

- MCMC inference, 36 hours!!
Efficient Inference on Fully connected CRF

• They propose an efficient approximate algorithm for inference on fully connected CRF

• Inference in 0.2 seconds
 • ~50,000 nodes (apply to pixel level segmentation)

• Based on a mean field approximation to the CRF distribution
Mean Field Approximation

• Mean field update rule for CRF

\[
Q_i(x_i = l) = \frac{1}{Z_i} \exp\{-\psi_u(x_i) - \sum_{l' \in L} \mu(l, l') \sum_{m=1}^{K} w^{(m)} \sum_{j \neq i} k^{(m)}(f_i, f_j) Q_j(l')\}
\]
Mean Field Approximation

\[Q_i(x_i = l) = \frac{1}{Z_i} \exp \left\{ -\psi_u(x_i) - \sum_{l' \in L} \mu(l, l') \sum_{m=1}^{K} w^{(m)} \sum_{j \neq i} k^{(m)}(f_i, f_j)Q_j(l') \right\} \]

Algorithm

• Initialize \(Q : Q_i(x_i) = \frac{1}{Z_i} \exp\{-\phi_u(x_i)\} \)

• While not converged

 • Message passing: \(\overline{Q_i}^{(m)}(l) = \sum_{j \neq i} k^{(m)}(f_i, f_j)Q_j(l') \)
Mean Field Approximation

\[Q_i(x_i = l) = \frac{1}{Z_i} \exp \left\{ -\psi_u(x_i) - \sum_{l' \in L} \mu(l, l') \sum_{m=1}^{K} w^{(m)} Q_i^{(m)}(l) \right\} \]

Algorithm

- Initialize \(Q : Q_i(x_i) = \frac{1}{Z_i} \exp\{-\phi_u(x_i)\} \)
- While not converged
 - Message passing: \(Q_i^{(m)} = \sum_{j \neq i} k^{(m)}(f_i, f_j)Q_j(l') \)
 - Compatibility transform: \(Q_i(x_i) = \sum_{l' \in L} \mu(l, l') \sum_{m=1}^{K} w^{(m)} Q_i^{(m)}(l) \)
Mean Field Approximation

\[Q_i(x_i = l) = \frac{1}{Z_i} \exp\{-\psi_u(x_i) - \bar{Q}_i(x_i)\} \]

Algorithm

- Initialize Q: \[Q_i(x_i) = \frac{1}{Z_i} \exp\{-\phi_u(x_i)\} \]
- While not converged
 - Message passing: \[\bar{Q}_i^{(m)} = \sum_{j \neq i} k^{(m)}(f_i, f_j) Q_j(l') \]
 - Compatibility transform: \[\bar{Q}_i(x_i) = \sum_{l' \in L} \mu(l, l') \sum_{m=1}^{K} w^{(m)} \bar{Q}_i^{(m)}(l) \]
 - Update to calculate \(Q_i(x_i = l) \)
 - Normalization
Mean Field Approximation

\[Q_i(x_i = l) = \frac{1}{Z_i} \exp\{ -\psi_u(x_i) - \bar{Q}_i(x_i) \} \]

Algorithm

- Initialize $Q : Q_i(x_i) = \frac{1}{Z_i} \exp\{ -\phi_u(x_i) \}$
- While not converged
 - Message passing: $\bar{Q}_i^{(m)} = \sum_{j \neq i} k^{(m)}(f_i, f_j) Q_j(l')$
 - Compatibility transform: $\bar{Q}_i(x_i) = \sum_{l' \in L} \mu(l, l') \sum_{m=1}^{K} w^{(m)}(l) \bar{Q}_i^{(m)}(l)$
 - Update to calculate $Q_i(x_i = l)$
 - Normalization

$O(N^2)$
$O(N)$
$O(N)$
$O(N)$
Mean Field Approximation

\[Q_i(x_i = l) = \frac{1}{Z_i} \exp\{-\psi_u(x_i) - \widehat{Q}_i(x_i)\} \]

Algorithm

- Initialize Q : \(Q_i(x_i) = \frac{1}{Z_i} \exp\{-\phi_u(x_i)\} \)
- While not converged

 - Message passing: \(\widehat{Q}_i^{(m)} = \sum_{j \neq i} k^{(m)}(f_i, f_j) Q_j(l') \)

 - Compatibility transform: \(\widehat{Q}_i(x_i) = \sum_{l' \in L} \mu(l, l') \sum_{m=1}^{K} w^{(m)} \widehat{Q}_i^{(m)}(l) \)

 - Update to calculate \(Q_i(x_i = l) \)

 - Normalization
Efficient Message Passing

• Message passing

\[
Q_i^{(m)} = \sum_{j \neq i} k^{(m)}(f_i, f_j)Q_j(l')
\]

• Gaussian filter \(k^{(m)}(f_i, f_j)\)
• Apply convolution to \(Q_j(l')\)
Efficient Message Passing

- Message passing
 \[Q_i^{(m)} = \sum_{j \neq i} k^{(m)}(f_i, f_j)Q_j(l') = [G^{(m)} \otimes Q(l)] - Q_i(l) \]

- Gaussian filter \(k^{(m)}(f_i, f_j) \)
- Apply convolution to \(Q_j(l') \)
- Smooth, low-pass filter \-> can be reconstructed by a set of samples (by sampling theorem)
Efficient Message Passing

• Message passing

\[
\overline{Q_i^{(m)}} = \sum_{j \neq i} k^{(m)}(f_i, f_j)Q_j(l') = [G^{(m)} \otimes Q(l)] - Q_i(l)
\]

• Downsampling \(Q_j(l')\)
• Blur the downsampled signal (apply convolution operator with kernel \(k^{(m)}\))
• Upsampling to reconstruct the filtered signal ~ \(\overline{Q_i^{(m)}}\)

• Reduce the time complexity to \(O(N)\)
Mean Field Approximation

\[Q_i(x_i = l) = \frac{1}{Z_i} \exp\{ -\psi_u(x_i) - \bar{Q}_i(x_i) \} \]

Algorithm

- Initialize \(Q : Q_i(x_i) = \frac{1}{Z_i} \exp\{ -\phi_u(x_i) \} \)
- While not converged

O(N) • Message passing: \(\bar{Q}_i^{(m)} = \sum_{j \neq i} k^{(m)}(f_i, f_j)Q_j(l') \)

O(N) • Compatibility transform: \(\bar{Q}_i(x_i) = \sum_{l' \in L} \mu(l, l') \sum_{m=1}^{K} w^{(m)} \bar{Q}_i^{(m)}(l) \)

O(N) • Update to calculate \(Q_i(x_i = l) \)

O(N) • Normalization
Results

Image

Dense CRF Results
Results
Conclusion

• A fully connected CRF model for pixel level segmentation
• Efficient inference on the fully connected CRF
 • Linear in number of variables
Dense CRF as Post-processing

Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. Chen et al. ICLR’15

Figure 3: Model Illustration. The coarse score map from Deep Convolutional Neural Network (with fully convolutional layers) is upsampled by bi-linear interpolation. A fully connected CRF is applied to refine the segmentation result. Best viewed in color.
Convergent Inference

 • A new efficient inference algorithm in dense CRF that is guaranteed to converge for some specific kernels and label compatibility functions.
Questions?
Pairwise Term in the Dense CRF Model

• Pairwise term

$$\psi_p(x_i, x_j) = \mu(x_i, x_j) \sum_{m=1}^{K} w^{(m)} k^{(m)}(f_i, f_j)$$

• They use

$$k(f_i, f_j) = w^{(1)} \exp \left(-\frac{|p_i - p_j|^2}{2\theta^2_{\alpha}} - \frac{|I_i - I_j|^2}{2\theta^2_{\beta}} \right) + w^{(2)} \exp \left(-\frac{|p_i - p_j|^2}{2\theta^2_{\gamma}} \right)$$

- p_i: position of pixel i
- I_i: color intensity of pixel I
- θ_\ast: hyper parameters