
IE 598 Inference in Graphical Models

Solution 1

Problem 1.1 (Exercise 2.5 in Koller/Friedman)

Let X, Y , Z be three disjoint subsets of random variables. We say X and Y are conditionally independent
given Z if and only if

PX,Y |Z(x, y|z) = PX|Z(x|z)PY |Z(y|z) .

Show that X and Y are conditionally independent given Z if and only if the joint distribution for the three
subsets of random variables factors in the following form:

PX,Y,Z(x, y, z) = h(x, z) g(y, z) .

Solution 1.1

First, we show that conditional independence implies the desired factorization.

PX,Y,Z(x, y, z) = PZ(z)PX,Y |Z(x, y|z)
= PZ(z)PX|Z(x|z)PY |Z(y|z)
= h(x, z) g(y, z) ,

where we choose h(x, z) = PX|Z(x|z) and g(y, z) = PY |Z(y|z)PZ(z).

Now, we show the other direction. For PX,Y,Z(x, y, z) = h(x, z) g(y, z), let h1(z) =
∑
x h(x, z) and g1(z) =∑

y g(y, z). We need to show that for such PX,Y,Z(x, y, z), we have PX,Y |Z(z, y|z) = PX|Z(x|z)PY |Z(y|z).
We first compute

PX,Y |Z(z, y|z) =
PX,Y,Z(x, y, z)∑
x,y PX,Y,Z(x, y, z)

=
h(x, z)g(y, z)∑
x,y h(x, z)g(y, z)

=
h(x, z)g(y, z)

h1(z)g1(z)
.

Similarly, we can compute PX|Z(x|z) = h(x, z)/h1(z) and PY |Z(y|z) = g(y, z)/g1(z). This proves the condi-
tional independence, since PX,Y |Z(z, y|z) = PX|Z(x|z)PY |Z(y|z).

Problem 1.2 (Exercise 4.1 in Koller/Friedman)

In this problem, we will show by example that the distribution of a graphical model need not have a
factorization of the form in the Hammersley-Clifford Theorem if the distribution is not strictly positive. In
particular, we will consider a distribution on the following simple 4-cycle where each node is a binary random
variable, Xi, for i ∈ {1, 2, 3, 4}. Consider a probability distribution that assigns a probability 1/8 uniformly
to each of the following set of values (X1, X2, X3, X4):

(0, 0, 0, 0) (1, 0, 0, 0) (1, 1, 0, 0) (1, 1, 1, 0)

(0, 0, 0, 1) (0, 0, 1, 1) (0, 1, 1, 1) (1, 1, 1, 1)
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and assigns zero to all other configurations of (X1, X2, X3, X4).

(a) We first need to show that this distribution is Markov on our graph. To do this, it should not be
difficult to see that what we need to show are the following conditions:

– The pair of variables X1 and X3 are conditionally independent given (X2, X4).

– The pair of variables X2 and X4 are conditionally independent given (X1, X3).

First, show that if we interchange X1 and X4 and interchange X2 and X3, we obtain the same distri-
bution, i.e.., P(x1, x2, x3, x4) = P(x4, x3, x2, x1). This implies that if we can show the first condition,
then the other is also true.

(b) Show that whatever pair of values you choose for (X2, X4), we then know either X1 or X3 with
certainty. For example, (X2 = 0, X4 = 0) implies that X3 = 0. Since we know either X1 or X3 with
certainty, then conditioning on the other one of these obviously provides no additional information,
trivially proving conditional independence.

(c) What we now need to show is that the distribution cannot be factorized in the way stated in the
Hammersley-Clifford Theorem. We will do this by contradiction. Noting that the maximal cliques in
our graph are just the edges and absorbing the normalization 1/Z into any of the pairwise compatibility
functions, we know that if our distribution has the factorization implied by the Hammersley-Clifford
Theorem, we can write it in the following form:

P(x1, x2, x3, x4) = ψ12(x1, x2)ψ23(x2, x3)ψ34(x3, x4)ψ41(x4, x1) .

Show that assuming that our distribution has such a factorization leads to a contradiction by examining
the values of P(0, 0, 0, 0), P(0, 0, 1, 0), P(0, 0, 1, 1), and P(1, 1, 1, 0).

Solution 1.2

(a) We don’t need to check P(x1, x2, x3, x4) = P(x4, x3, x2, x1) for configurations where x1 = x4 and
x2 = x3. For all others, we have

P(0, 0, 0, 1) = P(1, 0, 0, 0) =
1

8

P(0, 0, 1, 1) = P(1, 1, 0, 0) =
1

8
P(0, 1, 0, 1) = P(1, 0, 1, 0) = 0

P(0, 1, 1, 1) = P(1, 1, 1, 0) =
1

8
P(0, 0, 1, 0) = P(0, 1, 0, 0) = 0

P(0, 1, 0, 0) = P(0, 0, 1, 0) = 0

P(1, 0, 1, 1) = P(1, 1, 0, 1) = 0

P(1, 1, 0, 1) = P(1, 0, 1, 1) = 0
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(b) If (X2, X4) = (0, 0) then X3 = 0. If (X2, X4) = (0, 1) then X1 = 0. If (X2, X4) = (1, 0) then X1 = 1.
If (X2, X4) = (1, 1) then X3 = 1.

(c) The following equations are true:

ψ12(0, 0)ψ23(0, 1)ψ34(1, 0)ψ41(0, 0) = 0

ψ12(0, 0)ψ23(0, 0)ψ34(0, 0)ψ41(0, 0) = 1/8

ψ12(0, 0)ψ23(0, 1)ψ34(1, 1)ψ41(1, 0) = 1/8

Then, it follows that ψ34(1, 0) must be zero. This is a contradiction, since we know that

ψ12(1, 1)ψ23(1, 1)ψ34(1, 0)ψ41(0, 1) = 1/8 .

Problem 1.3

Given a graph G = (V,E), an independent set of G is a subset S ⊆ V of the vertices, such that no two
vertices in S is connected by an edge in E. Precisely, if i, j ∈ S then (i, j) /∈ E. We let IS(G) denote the
set of all independent sets of G, and let Z(G) = |IS(G)| denote its size, i.e. the total number of independent
sets in G. The number of independent sets Z(G) is at least 1 + |V |, since the empty set and all subsets with
single vertex are always independent sets. We are interested in the uniform probability measure over S:

PIS(G)(S) =
1

Z(G)
I(S ∈ IS(G)) ,

where I(A) is an indicator function which is one if event A is true and zero if false.

(a) The set S can be naturally encoded by a binary vector x ∈ {0, 1}|V | by letting xi = 1 if and only if
i ∈ S. Denote by PG(x) the probability distribution induced on this vector x according to PIS(G)(S).
Show that PG(x) is a pairwise graphical model on G.
[Hint: A pairwise graphical model on a graph G = (V,E) is defined by a factorization of the form
PG(x) = (1/Z)

∏
(i,j)∈E ψi,j(xi, xj).]

(b) Let Ln be the line graph with n vertices, i.e. the graph with vertex set V (Ln) = {1, 2, 3, . . . , n} and
edge set E(Ln) = {(1, 2), (2, 3), . . . , (n− 1, n)}. Derive a formula for Z(Ln).
[Hint: Write a recursion over n, and solve it using a matrix representation.]

(c) With the above definitions, derive a formula for PLn
(xi = 1), for each i ∈ {1, . . . , n}. Plot PLn

(xi)
versus i for n = 11. Describe the main features of this plot. Can you give an intuitive explanation?
[Hint: Use the recursion from previous subproblem.]

(d) The same probability distribution PLn
(x) can be also represented with a Bayesian network. Using the

recursions used in (b) and (c), write the conditional probability distributions for this Bayesian network.

Solution 1.3

(a) Define the compatibility functions to be

ψi,j(xi, xj) = I((xi, xj) 6= (1, 1))
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Then, with this definition the joint distribution factorizes in the following form:

PG(x) =
1

Z

∏
(i,j)∈E

ψi,j(xi, xj)

since the product of ψi,j ’s yield the indicator I(S ∈ IS(G)) for the subset S encoded by x. Hence,
PG(x) is a pairwise graphical model.

(b) We know that X(Ln) is the number of independent sets in the graph Ln. Let Z(Ln) = An +Bn where
An denotes the number of independent sets in Ln containing the vertex n, and Bn denotes the number
of independent sets in Ln excluding the vertex n. We can write the following recursion:

An = Bn−1

Bn = An−1 +Bn−1

The first recurrence follows from the fact that if S ⊆ [n] containing n is an independent set of Ln, then
S \ {n} is an independent set of Ln−1. The second, similarly, is because an independent set of Ln not
containing vertex n is basically an independent set of Ln−1. Defining Xn = [An Bn]T , we can write
the recurrence relation as:

Xn = PXn−1

where P =

[
0 1
1 1

]
and X1 =

[
1
1

]
This yields: Xn = Pn−1X1. As Z(Ln) = [1 1]TXn, diagonalizaing P yields the following closed form
solution:

Z(Ln) =
(

1 +
2√
5

)(1 +
√

5

2

)n−1
+
(

1− 2√
5

)(1−
√

5

2

)n−1
(c) For i ∈ {1, n}, i.e. i being an end vertex, the number of independent sets containing i is simply

Z(Ln−2). If i is an intermediate vertex, then an independent set containing i is formed by choosing an
independent set from [i− 2] and an independent set from [n] \ [i+ 1]. Thus we obtain the marginal as:

PLn
(xi = 1) =

{
Z(Ln−2)
Z(Ln)

if i ∈ {1, n}
Z(Li−2)Z(Ln−i−1)

Z(Ln)
otherwise

The following MATLAB code prodces the required plots:

n = 1 1 ;
nrange = 0 : n ;
c1 = 1+2/sqrt ( 5 ) ;
c2 = 1-2/sqrt ( 5 ) ;
r1 = (1+sqrt ( 5 ) ) / 2 ;
r2 = (1-sqrt ( 5 ) ) / 2 ;
%z (1) . . . z (12) contains Z0 to Z11
z = c1∗ r1 . ∧ ( nrange-1) + c2∗ r2 . ∧ ( n range -1);

% compute marginal s mu
mu = zeros ( 1 , n ) ;
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mu( 1 ) = z (end-2)/z (end ) ;
mu(n) = mu( 1 ) ;
for i = 2 : ( n-1)
mu( i ) = z ( i -1) z (n-i )/ z (n+1);
end

plot ( 1 : n , mu)

The plot is as follows:

The exponent in the numerator is constant for i = 2, . . . , n − 1, hence we see a relatively at marginal
curve in this region. The marginal increases at either end, since the end vertices impose fewer restric-
tions on the inclusion of other vertices in the independent set.

(d) By the law of conditional probability, we have:

PLn(x) = PLn(x1)PLn(x2|x!) · · ·PLn(xn|x1 · · ·xn−1)

Since the inclusion of vertex i is dependent only on its neighbors, we have PLn
(xi|x1, · · · , xi−1) =

PLn(xi|xi−1). This is equivalent to creating a Bayesian network by directing all the edges in Ln
towards the larger index, i.e. letting the parent π(k) of a vertex k be k−1, k = 2, · · · , n. Using similar
arguments as before, we have that:

PLn
(xi = 1|xi−1) =

{
0 if xi−1 = 1

Z(Ln−i−1)
Z(Ln−i+1)

otherwise

Problem 1.4

We again consider the independent set explained in the previous problem. Now let G = Tk,` denote the
rooted tree with branching factor k and ` generations, that is the root has k descendants and each other node
has one ancestor and k descendants except for the leaves. The total number of vertices is (k`+1− 1)/(k− 1),
and Tk,`=0 is the graph consisting only of the root. We let φ denote the root of Tk,`.
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(a) Let Z` = Z(Tk,`) denote the total number of independent sets of G = Tk,`. Let Z`(0) be the number of
independent sets in Tk,` such that the root is xφ = 0, and Z`(1) be the number of independent sets such
that xφ = 1. It is immediate that Z0(0) = Z0(1) = 1. Derive a recursion expressing (Z`+1(0), Z`+1(1))
as a function of (Z`(0), Z`(1)).

(b) Using the above recursion, derive a recursion for the probability that the root belongs to a uniformly
random independent set. Explicitly, derive a recursion for

p` = PTk,`
({xφ = 1}) .

(c) Program this recursion and plot p` as a function of ` ∈ {0, 1, . . . , 50} for four values of k, e.g.
k ∈ {1, 2, 3, 10}. Comment on the qualitative behavior of these plots.

(d) Prove that, for k ≤ 3, the recursion converges to a unique value using Banach’s fixed point theorem.

Solution 1.4

(a) As before, we assume that an empty set is an independent set, by definition. An independent set not
containing the root φ is formed by choosing an independent set from each subtree rooted at one of
the children of φ. Also, an independent set containing the root φ cannot have any of the children of φ
and thus is formed of in addition to independent sets not containing the root in the subtrees of the
children of . This yields the following recursion equations:

Z`+1(0) = (Z`(0) + Z`(1))k

Z`+1(1) = Z`(0)k

Z0(0) = Z1 = 1

(b) We have the following immediately:

p`+1 =
Z`+1(1)

Z`+1(0) + Z`+1(1)

=
Z`(0)k

(Z`(0) + Z`(1))k + Z`(0)k

=
1

1 +
(

1
1−p`

)k
(c) The following code plots pl for the relevant values of k and `:

kvals = [1 2 3 10];
iters = length ( kvals ) ;
lvals = 1:50;
p = zeros ( iters , 1+length ( lvals ) ) ;
p ( : , 1 ) = 0 . 5 ∗ ones ( iters , 1 ) ; % initialization
spec = { ’b’ ’g’ ’r’ ’k’ } ;

figure (1)
hold on
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for i = 1 : iters
k = kvals ( i );
for l = 1 : length ( lvals )

p ( i , l +1) = (1p ( i , l ) )∧k/(1+(1p ( i , l ) )∧k ) ;
end
plot ( [ 0 lvals ] , p ( i , : ) , spec { i } ) ;

end
hold off
legend ( ’1’ , ’2’ , ’3’ , ’10’ ) ;

The plot is as follows:

The recursion converges to a fixed point for k ≤ 3 but fails to (or appears to fail to) converge for k > 3.

(d) Proof of convergence for k ≤ 3

Let fk : [0, 1]→ [0, 1] be the mapping (as in the recursion) parametrized by k:

fk(x) =
(1− x)k

1 + (1− x)k

We use Banachs fixed point theorem to prove convergence.
Theorem 1 (Banach). Let X be a complete metric space and f : X → X be a contraction mapping.
Then f has a unique fixed point x∗. Also the sequence {xi}∞i=1 generated by xi = f(xi−1) converges to
x∗.

Definition 1. Let X be a metric space and d(·, ·) be the associated metric. f : X → X is a contraction
mapping with parameter β on X if ∃0 ≤ β < 1 such that:

∀x1, x2 ∈ X : d(f(x1), f(x2)) ≤ βd(x1, x2)

In our case, the space is the interval [0, 1] with the associated metric being the absolute value of the
difference: d(x1, x2) = |x1 − x2|.

7



We know that a fixed point exists as the mappings fk are continuous, decreasing and map onto [0, 0.5]
for all k. However, this does not guarantee that the recursion converges. To use the fixed point theo-
rem, we prove that for k = 1, 2, 3, fk are contraction mappings. For this we use the following lemma:

Lemma 1. Let f : [1, b] → [1, b] be a differentiable function such that |f ′(x)| is bounded uniformly by
β < 1 in its domain. Then f is a contraction mapping with parameter β, the distance metric being the
absolute value of the difference.

Proof. Consider a ≤ x1 < x2 ≤ b. By the intermediate value theorem, ∃c ∈ [x1, x2] such that
f(x2)− f(x1) = f ′(c)(x2 − x1). Thus |f(x2)− f(x1)| = |f ′(c)| |x2 − x1| ≤ β|x2 − x1|.

A little calculus shows that the maximum value of |f ′k(x)| occurs at x = 1 −
(
k−1
k+1

)1/k
, whereby we

get:

|f ′k(x)| ≤ (k + 1)2

4k

(k − 1

k + 1

) k−1
k

For k = 2, 3 this yields that fk is indeed a contraction map by Lemma 1. Thus, by the fixed point
theorem, the recursion converges to its unique fixed point. For k = 1, we cannot use this directly as
the maximum is at x = 0 and f1(0) = −1. However this can be remedied by restricting the domain
of f1 to [ε, 1] for some small ε > 0 whereupon it becomes a contraction map on the restricted domain
since |f ′1(x) ≤ 1

(1+ε)2 .

Non-convergence for k > 4
One argument for the non-convergence of the recursion for larger k is the following condition: there
must exist a neighborhood around the fixed point x∗ in which |fk(x)| < 1 holds. This is because the
linearization of fk around its fixed point must be a stable linear system, i.e. have eigenvalues within
the unit circle. For values of k > 4, this condition fails to hold.

Problem 1.5 (Intersection lemma) In proving that pairwise Markov property implies global Markov
property for undirected graphical models, we used the intersection lemma which states that if µ is strictly
positive and

A–(C ∪D)–B, A–(B ∪D)–C,

then

A–D–(B ∪ C) .

Here A–B–C if and only if µ(xA, xC |xB) = µ(xA|xB)µ(xC |xB). From previous homework, we know that
A–(C ∪D)–B if and only if µ(xA, xB , xC , xD) = a(xA, xC , xD) b(xB , xC , xD) for some function a(·) and b(·).
Similarly, we have µ(xA, xB , xC , xD) = f(xA, xB , xD) g(xB , xC , xD).

(a) Show f(xA, xB , xD) = a′(xA, xD) b′(xB , xD) for some a′(·) and b′(·) and find one such pair of functions
a′ and b′ in terms of a(), b(), g().

(b) Substitute f(·) and prove A–D–(B ∪ C).

(c) Find a counter example when µ is not strictly positive.

Solution 1.5
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(a) since µ = a·b = a′·b′·g, we can set a′(xA, xD) = a(xA, x
∗
C , xD) and b′(xB , xD) = b(xB , x

∗
C , xD)/g(xB , x

∗
C , xD),

for any values of x∗C of choice. Note this is only well-defined for positive g(·), i.e. g(xB , x
∗
C , xD) > 0

for all xA and xD.

(b) Substituting f(·) we get

µ(xA, xB , xC , xD) = a′(xA, xD) b′(xB , xD) g(xB , xC , xD)︸ ︷︷ ︸
a function of xB , xC , xD

which proves A–D–(B ∪ C).

(c) a counter example:

ignore xD (make it deterministic for instance) and let

xA =

{
1 w.p. 1/2
−1 w.p. 1/2

xB =

{
xA w.p. 1/2

2xA w.p. 1/2

xC =

{
xA w.p. 1/2

2xA w.p. 1/2

given xB we know xA, so conditional xA ⊥ xB |xC and also xA ⊥ xC |xB , but it is clear that xA 6⊥
(xB , xC).
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