
IE 598 Inference in Graphical Models

Homework 2

Problem 2.1

In this problem, we will show that when the distribution µ(x) is not strictly positive (i.e. µ(x) = 0 for
some x), then the I-map for this distribution is not unique. Consider a distribution of 4 binary random
variables x1, x2, x3, and x4 such that µ(x1 = x2 = x3 = x4 = 1) = 0.5 and µ(x1 = x2 = x3 = x4 = 0) = 0.5.
The following two undirected graphical models are both minimal I-maps for this distribution, hence it is not
unique.

2

3 4

1 2

3 4

1

(a) Prove that the two undirected graphical models above are minimal I-maps for the distribution µ(x).
You need to show that both graphs are I-maps for the given distribution µ(x) and that removing any
edge results in introducing independencies that are not implied by the distribution µ(x).

(b) Now, we show that starting with a complete graph and eliminating edges that are pairwise condition-
ally independent does not always give you an I-map (minimal or not). Start with a complete graph
K4. For each pair of nodes, eliminate the edge between this pair if they are conditionally independent
given the rest of the nodes in the graph. Continue this procedure for all pairs of nodes and examine
the resulting graph. Is this an I-map of the distribution µ(x1, x2, x3, x4)?

Recall from class, that a distribution over x is (globally) Markov with respect to G = (V,E) if, for any
disjoint subsets of nodes A, B, C such that B separates A from C, xA–xB–xC is satisfied. Recall two
other notions of Markovity. A distribution is pairwise Markov with respect to G if, for any two nodes
i and j not directly linked by an edge in G, the corresponding variables xi and xj are independent
conditioned on all of the remaining variables, i.e. for all (i, j) /∈ E,

xi–xV \{i,j}–xj

A distribution is locally Markov with respect to G if any node i, when conditioned on the variables on
the neighbors of i, is independent of the remaining variables, i.e. for all i ∈ V ,

xi–x∂i–xV \{i,∂i}

(c) Using the example of distribution on 4 random variables as a counter example, prove that a distribution
is pairwise Markov w.r.t. G does not always imply that it is locally Markov w.r.t. the same graph G.
(However, if the distribution is positive, pairwise Markovity implies local and global Markovity.)

(d) Using the definitions of Markov properties, prove that if a distribution is globally Markov with respect
to G, then it is locally Markov with respect to G.

1

(e) (Optional) Using the definitions of Markov properties, prove that if a distribution is locally Markov
with respect to G, then it is pairwise Markov with respect to G.

Solution 2.1

(a) The (set of) independencies implies by the first graph G1 is x3–x4–{x1, x2}, x3–{x4, x1}–x2, x4–x1–x2.
Since this is included in I(µ), G1 is an I-map of µ.

The (set of) independencies implies by the second graphG2 is x4–x3–{x1, x2}, x4–{x1, x3}–x2, x3–x1–x2.
Since this is included in I(µ), G1 is an I-map of µ.

Further, if we remove an edge from either G1 or G2, the graphs are separated into two disjoint. This
implies that there are two sets of nodes which are independent, which is not true for the given µ.
Hence, bothe graphs are minimal I-maps of µ.

(b) The resulting graph is a graph of 4 nodes with no edges. This graph implies, for instance, that x1 and
x2 are independent, which is not true for the given µ. Hence, this is not an I-map.

(c) The given distribution µ(x) is pairwise Markov with respect to the graph in (b). However, it is
not globally Markov w.r.t. that graph. This proves that pairwise Markovity does not imply global
Markovity.

(d) Using the definition of global Markovity, let A = i and B = ∂i. Then it follows from the definition of
∂i that B separates A from the rest of the graph. Hence, xi–x∂i–xV \{i,∂i}. Since this is true for any
choice of i, this proves that mu is also locally Markov w.r.t. G.

(e) First, note that xi–x∂i–xV \{i}\∂i implies xi–x∂i–xV \{i,j}\∂i. Then, by local Markovity,

µ(xi, xj |xV \{i,j}) = µ(xj |xV \{i,j})µ(xi|xV \{i})
= µ(xj |xV \{i,j})µ(xi|x∂i)
= µ(xj |xV \{i,j})µ(xi|xV \{i,j})

this implies that local Markovity implies pairwise Markovity.

2

Problem 2.2

Consider a stochastic process that transitions among a finite set of states s1, . . . , sk over time steps
i = 1, . . . , N . The random variables X1, . . . , XN representing the state of the system at each time step are
generated as follows:

• Sample the initial state X1 = s from an initial distribution p1, and set i := 1.

• Repeat the following:

– Sample a duration d from a duration distribution pD over the integers {1, . . . ,M}, where M is
the maximum duration.

– Remain in the current state s for the next d time steps, i.e., set

Xi := Xi+1 := . . . := Xi+d−1 := s

– Sample a successor state s′ from a transition distribution pT (·|s) over the other states s′ 6= s (so
there are no sef-transitions).

– Assign i := i+ d and s := s′.

This process continues indefinitely, but we only observe the first N time steps. You need not worry
about the end of the sequence to do any of the problems. As an example calculation with this model, the
probability of the sample state sequence s1, s1, s1, s2, s3, s3 is

p1(s1)pD(3)pT (s2|s1)pD(1)pT (s3|s2)
∑

2≥d≤M

pD(d) .

Finally, we do not directly observe the Xi’s, but instead observe emissions yi at each step sampled from a
distribution pYi|Xi

(yi|xi).

(a) For this part only, suppose M = 2, and pD(d) =

{
0.6 for d = 1
0.4 for d = 2

, and each Xi takes on a value

from an alphabet {a, b}. Draw a minimal directed I-map for the first five time steps using the variables
(X1, . . . , X5, Y1, . . . , Y5). Explain why none of the edges can be removed.
[Note: you do not need to solve part (a) in order to solve part (b) and (c).]

(b) This process can be converted to an HMM using an augmented state representation. In particular, the
states of this HMM will correspond to pairs (x, t), where x is a state in the original system, and t
represents the time elapsed in that state. For instance, the state sequence s1, s1, s1, s2, s3, s3 would be
represented as (s1, 1), (s1, 2), (s1, 3), (s2, 1), (s3, 1), (s3, 2). the transition and emission distribution for
the HMM take the forms

p̃Xi+1,Ti+1|Xi,Ti
(xi+1, ti+1|xi, ti) =

 φ(xi, xi+1, ti) if ti+1 = 1 and xi+1 6= xi
ξ(xi, ti) if ti+1 = ti + 1 and xi+1 = xi
0 otherwise

and p̃Yi|Xi,Ti
(yi|xi, ti), respectively. Express φ(xi, xi+1, ti), ξ(xi, ti), and p̃Yi|Xi,Ti

(yi|xi, ti) in terms of
parameters p1, pD, pT , pYi|Xi

, k, N , and M of the original model.

(c) We wish to compute the marginal probability for the final state XN given the observations Y1, . . . , YN .
If we naively apply the sum-product algorithm to the construction in part (b), the computational
complexity is O(Nk2M2). Show that by exploiting additional structure in the model, it is possible to
reduce the complexity to O(N(k2+kM)). In particular, give the corresponding rules for computing the
forward messages νi+1→i+2(xi+1, ti+1) from the previous message νi→i+1(xi, ti). Do not worry about

3

the beginning or the end of the sequence and restrict your attention to 2 ≤ i ≤ N − 1.
[Hint: substitute your solution from part (b) into the standard update rule for HMM messages and
simplify as much as possible.]
[Note: If you cannot fully solve this part of the problem, you can receive substantial partial credit by
constructing an algorithm with complexity O(Nk2M).]

Solution 2.2

(a) Here is the minimal directed I-map:

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

Consider the factorization

pX1,Y2,...,XN ,YN
= pX1 pY1|X1

pX2|X1,Y1
pY2|X1,Y1,X2

· · · pYN |X1,Y1,...,YN−1,XN

The distribution pXi|X1,...,Xi−1,Y1,...,Yi−1
depends only on {Xi−M , . . . , Xi−1} through the transition

distributions and duration distributions. Similar to the HMMs, the distribution pYi|X1,...,Xi,Y1,...,Yi−1

depends only on Xi. This yields the DAG above.

The arrows Xi → Yi are necessary because the observations depend on the states. As for the arrows
between states, the following table for pXi|Xi−1,Xi−2

shows that neither the one-step nor the two-step
edges can be removed for i ≥ 3.

xi−2 xi−1 pX1|Xi−2,Xi−1
(b|xi−1, xi−1)

a a 1
a b 0.6
b a 0.4
b b 0

(b) The HMM with augmented state representation is
First note that the probability of switching after m-th consecutive time step in a given state is

y1 y2 y3 y4 y5

x1, x2, x3, x4, x5,
t1 t2 t3 t4 t5

S(m) = P(d = m|d ≥ m) =
pD(m)∑m
i=1 pD(i)

Then,

p̃Xi+1,Ti+1|Xi,Ti
(xi+1, ti+1|xi, ti) =

 pT (xi+1|xi)S(ti) if ti+1 = 1 and xi+1 6= xi
P(D ≥ ti + 1|D ≥ ti) if ti+1 = ti + 1 and xi+1 = xi
0 otherwise

4

This gives

φ(xi, xi+1, ti) = P(D = ti |D ≥ ti)pT (xi+1|xi) =
pD(ti)∑
d≥ti pD(d)

pT (xi+1|xi)

ξ(xi, ti) = P(D ≥ ti + 1 |D ≥ ti) =

∑
d≥ti+1 pD(d)∑
d≥ti pD(d)

p̃Yi|Xi,Ti
(yi|xi, ti) = pYi|Xi

(yi|xi)

(c) For HMMs, the forward BP update rule is

νi+1→i+2(xi+1, ti+1) = p̃Yi+1|Xi+1,Ti+1
(yi+1|xi+1, ti+1)

∑
xi

∑
ti

p̃Xi+1,Ti+1|Xi,Ti
(xi+1, ti+1|xi, ti)νi→i+1(xi, ti)

Substituting the formula in part (b), we get

νi+1→i+2(xi+1, ti+1) =

p̃Yi+1|Xi+1
(yi+1|xi+1)

∑
xi

∑
ti

{
I(ti+1=1)I(xi+1 6=xi)φ(xi, xi+1, ti) + I(ti+1=ti+1)I(xi+1=xi)ξ(xi, ti)

}
νi→i+1(xi, ti)

To sum out the terms involving ξ(xi, ti), it requires O(kM) operations, since we need to consider all
combinations of xi+1 ∈ {1, . . . , k} and ti+1 ∈ {2, . . . ,M} and for each combination we need to evaluate
ξ(xi+1, ti+1 − 1)νi→i+1(xi+1, ti+1 − 1) once.

If we naively sum out the terms involving φ(xi, xi+1, ti), it requires O(k2M) operations, since we can
fix ti+1 = 1 and consider all xi+1 ∈ {1, . . . k} and sum over all xi 6= xi+1 and ti ∈ {1, . . . ,M}.
Further speedup can be achieved by the factorization of φ(xi, xi+1, ti) = a(ti)b(xi, xi+1). Then the
first term becomes

p̃Yi+1|Xi+1
(yi+1|xi+1)

∑
xi

∑
ti

I(ti+1=1)I(xi+1 6=xi)φ(xi, xi+1, ti)νi→i+1(xi, ti)

= p̃Yi+1|Xi+1
(yi+1|xi+1)I(ti+1=1)

∑
xi 6=xi+1

∑
ti

a(ti)b(xi, xi+1)νi→i+1(xi, ti)

= p̃Yi+1|Xi+1
(yi+1|xi+1)I(ti+1=1)

∑
xi 6=xi+1

b(xi, xi+1)
∑
ti

a(ti)νi→i+1(xi, ti)

The inner summation does not depend on xi+1 and can be computed in O(kM) operations. Then, the
outer summation requires O(k) operations and must be computed for each xi+1, requiring total O(k2)
operations. Hence, the total running time for the forward update is O(N(k2 + kM)).

5

Problem 2.3

Consider random variables X1, X2, Y1, . . . , YN , Z1, . . . , ZN distributed according to

pX1,X2,Y,Z(x1, x2, y, z) = pX1
(x1)pX2

(x2)

N∏
i=1

[
pY |X1

(yi|x1)pZ|Y,X2
(zi|yi, x2)

]
,

whereX1, Y1, . . . , YN , Z1, . . . , ZN take on values in {1, 2, . . . ,K} andX2 instead takes on a value in {1, 2, . . . , N}.
A minimal directed I-map for the distribution is as follows:

x1

x2

z1 z2 zN

y1 y2 yN

Assume throughout this problem that the complexity of table lookups for pX1
, pX2

, pY |X1
, and pZ|Y,X2

are O(1).

(a) A Bayesian network represented by a directed acyclic graph can be turned into a Markov random field
by moralization. The moralized counterpart of a directed acyclic graph is formed by connecting all
pairs of nodes that have a common child, and then making all edges in the graph undirected. Draw
the moral graph over random variables X1, X2, Y1, . . . , YN conditioned on Z1, . . . , ZN . In other words,
find an undirected I-map for the distribution of random variables X1, X2, Y1, . . . , YN conditioned on
Z1, . . . , ZN .

Provide a good elimination ordering for computing marginals of X1, X2, Y1, . . . , YN conditioned on
Z1, . . . , ZN . For your elimination ordering, determine α and β such that complexity of computing
pX1|Z1,...,ZN

using the associated elimination algorithm is O(NαKβ).

(b) For the remainder of this problem, suppose that we also have the following context-dependent condi-
tional independencies: Yi is conditionally independent of Zi given X2 = c for all i 6= c. For fixed
z1, . . . , zN , x1, and c, show that

pZ1,...,ZN |X1,X2
(z1 . . . , zN |x1, c) = η(x1, c, zc)λ(c, z1, . . . , zc−1, zc+1, . . . , zN)

for some function η(x1, c, zc) that can be evaluated in O(K) operations for fixed (x1, c, zc), and some
function λ(c, z1, . . . , zN) that can be evaluated in O(N) operations for fixed (c, z1, . . . , zN). Express
η(x1, c, zc) in terms of pY |X1

and pZ|Y,X2
, and λ(c, z1, . . . , zc−1, zc+1, . . . , zN) in terms of pZ|X2

.

Solution 2.3

6

x1

x2

y1 y2 yN

z1 z2 zN

x1

x2

y1 y2 yN

(a) The moral graph of random variables (x1, x2, y1, . . . , yN , z1, . . . , zN) is

Conditioning on (a specific realization of) z1, . . . , zN , we get the following undirected graph.

Now, consider an elimination ordering I = (Y1, . . . , YN , X2, X1). For this elimination ordering, com-
puting the marginal pX1|Z1,...,ZN

requires summing out variables in the elimination order. Summing
out Yi requires O(NK2) operations, since for each Yi we need to sum over K values of Yi and we need
to repeat this for all instances of X1 ∈ {1, . . . ,K} and X2 ∈ {1, . . . , N}. Further, we need to repeat
this for each {Yi}i∈{1,2,...,N}. Hence, the overall computational complexity for the elimination ordering
is O(N2K2),i.e., α = 2, β = 2.

(b) The I-map for random variables ((x1, x2, y1, . . . , yN , z1, . . . , zN)) given x2 = c is

By the context-dependent conditional independencies, we have pZ|Y,X2
(zi|yi, c) = pZ|X2

(zi|c) for i 6= c.
Then,

pY,Z1,...,ZN |X1,X2
(yc, z1, . . . , zN |x1, x2 = c) = pY |X1

(yc|x1)pZ|Y,X2
(zc|yc, c)

N∏
i=1,i6=c

pZ|X2
(zi|c)

7

x1

x2

y1 yc yN

z1 zc zN

yN−1

zN−1

Summing over yc to marginalize, we get

pZ1,...,ZN |X1,X2
(z1, . . . , zN |x1, x2 = c) =

(∑
yc

pY |X1
(yc|x1)pZ|Y,X2

(zc|yc, c)
)

︸ ︷︷ ︸
≡η(x1,c,zc)

N∏
i=1,i6=c

pZ|X2
(zi|c)︸ ︷︷ ︸

≡λ(c,z1,...,zc−1,zc+1,...,zN)

Evaluating η(·) requires O(K) summations and evaluating λ(·) requires O(N) multiplications.

(c)

pX1,Z1...,ZN
(x1, z1, . . . , zN) = pX1

(x1)

N∑
c=1

pX2
(x2)η(x1, c, zc)λ(c, z1, . . . , zc−1, zc+1, . . . , zN)

To evaluate pX1|Z1...,ZN
(x1|z1, . . . , zN), we compute pX1,Z1...,ZN

(x1, z1, . . . , zN) for a given values of zi’s
and normalize it. Hence the complexity is the same as the complexity of evaluating pX1,Z1...,ZN

(x1, z1, . . . , zN)
for a specific values of zi’s and all K values of x1. For a given values of x1, z1, . . . , zN , it requires
O(N(N +K)) operations to evaluate the function. O(N) for evaluating λ(·) and O(K) for evaluating
η(· · ·). The extra O(N) comes from the summation over N possible values of c.

Problem 2.4

The graph G is a perfect undirected map for some strictly positive distribution µ(x) over a set of random
variables x = (x1, . . . , xn), each of which takes values in a discrete set X . Choose some variable xi and let
xA denote the rest of the variables in the model, i.e., {xi, xA} = {x1, . . . , xN}. Construct the graph G′ from
G by removing the node xi and all its edges. Let some value c ∈ X be given. Show that G′ is not necessarily
a perfect map for the conditional distribution PxA|xi

(·|c) by giving a counterexample.
Solution 2.4

Consider a distribution µ(x1, x2, x3) = 1
Z e
−x1x2x3 for binary random variables x1, x2, x3 ∈ {0, 1}. There

is no independence and a perfect map of this distribution is a complete undirected graph with thee nodes.
However, if we condition on x1 = 0 (c = 0 in this example), then the conditional distribution is µ(x2, x3|x1 =
0) = 1

Z , which means that x2 and x3 are independent. For this conditional distribution, a perfect map will
be two isolated nodes with no edge, but the induced graph from the original complete graph (by removing

8

node x1 and corresponding edges) is two nodes connected by an edge. Hence, G′ is not necessarily a perfect
map for the conditional distribution.

Problem 2.5

Consider the (parallel) sum-product algorithm on an undirected tree T = (V,E) with compatibility
functions ψij such that µ(x) =

∏
(i,j)∈E ψij(xi, xj). Consider any initialization of messages, which is denoted

by ν
(0)
i→j(xi) for all directions i→ j and all states xi. Messages at step t ≥ 1 are denoted by ν

(t)
i→j(xi). In this

problem, we will prove by induction that the sum-product algorithm, with the parallel schedule, converges
in at most diamater of the graph iterations. (Diameter of the graph is the length of the longest path.)

(a) For D = 1, the result is immediate. Consider a graph of diameter D. At each time step the message
that each of the leaf nodes sends out to its neighbors is constant because it does not depend on messages
from any other nodes. Construct a new undirected graphical model T ′ = (V ′, E′) by stripping each
of the leaf nodes from the original graph T . Let ψ′ij(xi, xj) be the compatibility functions for the

new graphical model, and ν
′(t)
i→j(xi) be the messages of (parallel) sum-product algorithm on the new

graphical model. Let L be the set of leaves in T and L′ be the set of nodes that is adjacent to a node
in L. For the new graphical model, we add, for all i ∈ L′,

ψ′i(xi) = ψi(xi)
∏

k∈∂i∩L

∑
xk

ν
(0)
k→i(xk)ψki(xk, xi)

where ψi(xi) = 1 if ψi(xi) is not defined for the original graph G and for all other edges we keep the
original compatibility functions

ψ′ij(xi, xj) = ψij(xi, xj) .

Also we initialize the messages as

ν
′(0)
i→j(xi) = ν

(1)
i→j(xi) .

Show that ν
′(t)
i→j(xi) = ν

(t+1)
i→j (xi) for all (i, j) ∈ E′ and all t ≥ 0.

(b) Argue that T ′ has diameter strictly less than D − 1.

(c) By the induction assumption that the parallel sum-product algorithm converges to a fixed point after
at most d time steps when the diameter is d ≤ D − 1, the sum-product algorithm on T ′ converges
after at most D − 2 time steps. Show that if we add back the leaf nodes into T ′ and run (parallel)
sum-product algorithm for one more time step, then all messages will have converged to a fixed point.

Solution 2.5

(a) At each time step the message that each of the leaf nodes sends out to its neighbor is constant because

it does not depend on messages from any other nodes. Hence, ν
(t)
i→j(xi) = ν

(0)
i→j(xi) if i ∈ L. Then

it follows from our construction of the new graphical model on T ′ that ν
′(t)
i→j(xi) = ν

(t+1)
i→j (xi) for all

(i, j) ∈ E′ and all t ≥ 0.

(b) The longest path in a tree is between two leaf nodes, so any path of length D will be length D − 2
in T ′. We also claim that for a path of length D − 1, at least one of the start and end nodes must
be a leaf. Otherwise, we could extend (if we cannot extend the path, we must form a cycle which is
impossible) the path in both directions to get a path of length D + 1, a contradiction. Hence, T ′ has
diameter strictly less than D − 1.

9

(c) By the induction hypothesis, we know that the messages in T ′ have converged after D−2 steps. Hence

ν
′(D−2)
i→j = ν′∗i→j . But by construction from part (a), we know that the messages in T ′ are the same as

the corresponding ones in T except for a 1 timestep difference, hence ν
(D−1)
i→j = ν

′(D−2)
i→j = ν′∗i→j where

neither i nor j is a leaf in T (i.e. they have converged). Therefore, after one more iteration, all the
messages from i to j, where j is a leaf in T , can be computed. Each of these messages are again also
fixed points. Thus, after D iterations each message will have converged to the fixed point.

Problem 2.6

For ` ∈ N, let G` = (V`, E`) be an ` × ` two-dimensional grid1. We consider an Ising model on G` with
parameters θ = {θij , θi : (i, j) ∈ E`, i ∈ V`}. This is the probability distribution over x ∈ {+1,−1}V`

µ(x) =
1

ZG
exp

{ ∑
(i,j)∈E`

θij xixj +
∑
i∈V`

θixi

}
(1)

(a) Write the belief propagation (BP) update equations for this model. Also write the update equation
for the log-likelihood ratio

L
(t)
i→j =

1

2
log
(ν(t)i→j(+1)

ν
(t)
i→j(−1)

)

(b) Write a program that implements these update. You are requested to return a printout of the code
(Matlab, C, C++, Java, . . . , are accepted). Feel free to download and start from the skeleton in bp.m

from the course website. In this case, you are only required to print out the parts of the code that you
added.

(c) Consider the case ` = 10 (and hence n = 100 nodes). For each β ∈ {0.2, 0.4, . . . , 2.8, 3.0}, generate an
instance by drawing θi, θij uniformly random in [0, β]. Run the BP iteration and monitor convergence
by computing the quantity

∆(t) ≡ 1

| ~E`|

∑
(i,j)∈~E`

∣∣ν(t+1)
i→j (+1)− ν(t)i→j(+1)

∣∣ . (2)

Here ~E` denotes the set of directed edges in G`, in particular | ~E`| = 2 |E`|.
Plot ∆(t = 15) and ∆(t = 25) versus β, for the random instances generated with β ∈ {0.2, 0.4, . . . , 2.8, 3.0}.
Comment on the results.

(d) Repeat the calculation at the precious point, with now θi, θij uniformly random in [−β,+β], with
β ∈ {0.2, 0.4, . . . , 2.8, 3.0}. Comment on the results.

Solution 2.6

(a) The belief propagation update equations for the grid are, up to normalization, as below:

ν
(t+1)
i→j (xi) ∝ eθixi

∏
k∈∂i\j

{∑
xk

eθikxixkν
(t)
k→i(xk)

}
1Namely V` = [`[×[`] and, for any two vertices i, j ∈ V`, i = (i1, i2), j = (j1, j2), i1, i2, j1, j2 ∈ [`], (i, j) ∈ E` if and only if

i1 = j1 and |i2 − j2| = 1, or i2 = j2 and |i1 − j1| = 1.

10

Since the variables take two values only, it is somewhat easier to use the log-likelihood ratio instead of
the beliefs as messages:

L
(t)
i→j =

1

2
log
(ν(t)i→j(+1)

ν
(t)
i→j(−1)

)
The update equations then become:

L
(t+1)
i→j =

1

2
log
(eθi

∏
k∈∂i\j

∑
xk
eθikxkν

(t)
k→i(xk)

e−θi
∏
k∈∂i\j

∑
xk
e−θikxkν

(t)
k→i(xk)

)

= θi +
∑

k∈∂i\j

1

2
log
(∑

xk
eθikxkν

(t)
k→i(xk)∑

xk
e−θikxkν

(t)
k→i(xk)

)

= θi +
∑

k∈∂i\j

1

2
log
(e(θik+L(t)

k→i) + e−(θik+L
(t)
k→i)

e(θik−L
(t)
k→i) + e−(θik−L

(t)
k→i)

)
Since 1

2 log(z) = arctanh(z−1z+1), the above simplifies to:

L
(t)
i→j = θi +

∑
k∈∂i\j

arctanh
{

tanh(θik) tanh(L
(t)
k→i)

}

(b) A solution is given as a separate .m file.

(c) The algorithm converges to a fixed point with high accuracy for the iteration numbers mentioned.
Lower iteration numbers yield a slightly better picture.

At low and high values of β, the algorithm converges quickly. For low values this is expected since the
interactions along edges are weak and the marginals are approximately the normalized node potentials
(corresponding to the graph with no edges). For intermediate values of beta the convergence is slower.
For reference, the plot for larger iterations is as below:

(d) The algorithm does not converge, except at very low values of β. For these values, the measure is
approximately independent over the vertices of the graph.

11

Problem 2.7

In this problem, you will implement the sum-product algorithm on a line graph and analyze the behavior
of S&P 500 index over a period of time. The following figure shows the price of S&P 500 index from January
2, 2009 to September 30, 2009 (http://finance.yahoo.com).

For each week, we measure the price movement relative to the previous week and denote it using a binary
variable (+1 indicates up and 1 indicates down). The price movements from week 1 (the week of January
5) to week 39 (the week of September 28) are plotted below:

Consider a hidden Markov model in which xt denotes the economic state (good or bad) of week t and

12

yt denotes the price movement (up or down) of the S&P 500 index. We assume that xt+1 = xt with
probability 0.8, and PYt|Xt

(yt = +1|xt = ‘good’) = PYt|Xt
(yt = −1|xt = ‘bad’) = q. In addition, assume

that PX1
(x1 = ‘bad’) = 0.8. Download the file sp500.mat from course website, and load it into MATLAB.

The variable price move contains the binary data above. Implement the (sequential) sum-product algorithm
and submit a hardcopy of the code (you dont need to include the code for loading data, generating figures,
etc.).

(a) Assume that q = 0.7. Plot PXt|Y (xt = ‘good’|y) for t = 1, 2, . . . , 39. What is the probability that the
economy is in a good state in the week of September 28, 2009 (week 39)?

(b) Repeat (a) for q = 0.9. Compare the results of (a) and (b).

Solution 2.7
The code will be provided in a separate .m file.

(a) PX39|Y (x39 = ‘good’|y) = 0.6830.

(b) PX39|Y (x39 = ‘good’|y) = 0.8379.

When q is smaller, the S&P 500 price movement is a less reliable indicator of the economic state, so
PXt|Y relies more on transition probabilities than emission probabilities. Since PXt+1|Y is higher when
Xt+1 = Xt, PXt|Y becomes smoother.

Problem 2.8

Consider a hidden Markov model (HMM) with binary states xi ∈ {0, 1} for i ∈ {1, . . . , n} and observations
yi’s. For simplicity, let us assume that the model is homogeneous, i.e., ψi,i+1(xi, xi+1) = ψ(xi, xi+1) and
φi(xi, yi) = φ(xi, yi). Given the observations yi’s we are interested in state estimates x̂i(y1, · · · , yn) that
maximizes the probability that at least one of those state estimates x̂i is correct.

13

(a) The desired state estimates can be expressed in the form

(x̂1, . . . , x̂n) ∈ arg minP(X1 = f(x̂1) ∧ · · · ∧ Xn = f(x̂n)|y1, . . . , yn) .

Determine the function f(·).

(b) Show that if only the marginal distributions µ(xi|y1 . . . , yn), i ∈ {1, . . . , n} for the model are available,
the desired state estimates cannot be determined. In particular, construct two HMMs whose marginals
coincide, but whose state estimates differ.
[Hint: it sufficies to consider a model with n = 2, and in which the observations are independent of the
states thus can be ignored. Accordingly, express your answer in the form of two compatibility functions
ψ(x1, x2) and ψ′(x1, x2).]

(c) Construct an example of an HMM in which our desired estimates are not the same as the MAP
estimates obtained from running the max-product algorithm on our model. The same hint in part (b)
applies, so again give your answer in the form of a compatibility function ψ(x1, x2).

(d) Let’s assume that you are given two pieces of code (e.g., matlab scripts).

The first routine implements the sum-product algorithm, taking as input the potential functions that
describe a homogeneous HMM, and an associated list of n observations. It produces as output the list
of marginal distributions for each associated n states conditioned on the full set of n observations, for
the specified HMM.

The second routine implements the max-product algorithm, taking the same inputs as sum-product
algorithm, but producing as output the max-marginals for each associated n states conditioned on the
full set of n observations, for the specified HMM.

Describe how to use one or both of these routines to compute the desired estimates x̂i(y1, . . . , yn) for
i ∈ {1, . . . , n} for our model of interest, assuming that the potentials are strictly positive. You are free
to use these routines with any input values you like (whether or not related to the model of interest),
and you can further process the outputs of these routines to compute the desired state estimates.
However, in such further processing, you are not allowed to (re)use the model’s potential functions or
observations.

Solution 2.8

(a) f(x) = 1− x.

Since any fixed estimate sequence either has at least one of the state estimates correct or has all of
them wrong (i.e. those events partition the sample space), maximizing the probability of at least one

14

state estimate being correct is equivalent to minimizing the probability that all state estimates are
wrong. Because of the binary state values, the probability that all state estimates are wrong is exactly
the probability that the true state sequence was the state-wise opposite of the estimate sequence, i.e.
where P(X1 = f(x̂1) ∧ · · · ∧ Xn = f(x̂n)|y1, . . . , yn) f(·) is the bit-flipping function.

(b) Consider two compatibility functions ψ(x1, x2) =

[
1
2 0
0 1

2

]
, ψ′(x1, x2) =

[
0 1

2
1
2 0

]
. For both cases, the

marginals are uniform. However, the variables under ψ are always in a (0, 0) or (1, 1) configuration
but could be in either one with equal probability, which means one should choose estimates of (0, 1)
or (1, 0) to cover both possibilities and get at least one estimate right with probability 1. For ψ′, the
situation is reversed: the most likely states are (0, 1) or (1, 0), and so to get at least one right with
probability 1 we would want to choose (1, 1) or (0, 0). Therefore marginal information will not suffice,
since it would not allow us to discriminate between ψ and ψ′.

(c) Either of our examples from part (b) would work here as well. For ψ(x1, x2), the MAP estimates are
clearly (0, 0) and (1, 1), but to choose one of those as our estimates for this problem would not be
optimal because an estimate of (0, 1) or (1, 0) means the all-wrong probability is 0, while the all-wrong
probability for either (1, 1) or (0, 0) is 1. Thus MAP estimates are not what we are after.

(d) Define new potentials ψ′(xi, xi+1) = 1
ψ(xi,xi+1)

and φ′(xi, yi) = 1
φ(xi,yi)

and run max-product on a new

HMM defined with these new potentials. We take the output MAP estimate and flip every bit, and
return the flipped sequence as our estimate.

As hinted in part (a), we can express our estimates easily in terms of the least likely sequence in the
original HMM, and the key insight is that the max-product algorithm can give us the least likely state
sequence if we give it inverted potentials, i.e. we invert the edge weights on the trellis on which the
max-product algorithm operates.

15

