
IE 598 Inference in Graphical Models

Homework 3

Covers lecture slides

4. Elimination algorithm

5. Max-product algorithm

6. Density evolution

7. Gaussian graphical models

Problem 3.1 Consider the following graphical model.

(a) Draw a factor graph representing the graphical model and specify the factor graph message-passing
equations. For this particular example, explain why the factor graph message-passing equations can
be used to compute the marginals, but the sum-product equations for pairwise MRF cannot be used.

(b) Define a new random variable x6 = {x1, x2, x3}, i.e., we group variables x1, x2, and x3 into one variable.
Draw an undirected graph which captures the relationship between x4, x5, and x6. Explain why you
can apply the sum-product algorithm to your new graph to compute the marginals. Compare the
belief propagation equations for the new graph with the factor graph message-passing equations you
obtained in part (a).

(c) If we take the approach from part (b) to the extreme, we can simply define a random variable x7 =
{x1, x2, x3, x4, x5}, i.e., define a new random variable which groups all five original random variables
together. Explain what running the sum-product algorithm on the corresponding one vertex graph
means. Assuming that we only care about the marginals for x1, x2, . . . , x5, can you think of a reason
why we would prefer the method in part (b) to the method in this part, i.e., why it might be preferable
to group a smaller number of variables together?

Problem 3.2 Let x ∼ N−1(hx, Jx), and y = Cx+ v, where v ∼ N (0, R).
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1. Find the potential vector hy|x and the information matrix Jy|x of p(y|x).

2. Find the potential vector hx,y and the information matrix Jx,y of p(x, y).

3. Find the potential vector hx|y and the information matrix Jx|y of p(x|y).

4. Consider the following Gaussian graphical model.

x1 x2 x3

x4

y1 y2

Let y1 = x1 + v1, y2 = x3 + v2, and R = I is the identity matrix. Find C. Represent messages hx3→x2

and Jx3→x2
in terms of y2 and the elements of hx and Jx. [y1 and y2 are measurements, which should

be treated as given and deterministically known.]

5. Now assume that we have an additional measurement y3 = x3 + v3, where v3 is a zero-mean Gaussian
variable with variance 1 and is independent from all other variables. Find the new C. Represent
messages hx3→x2

and Jx3→x2
in terms of y2, y3 and the elements of hx and Jx. [again y2 should be

considered as a measurement which is given, and deterministically known.]

6. The BP message from x3 to x2 define a Gaussian distribution with mean mx3→x2 = J−1x3→x2
hx3→x2 and

variance σx3→x2
= J−1x3→x2

. Comment on the difference in the mean and the variance of this message
when computed using a single observation y2 versus when computed using multiple observations (y2, y3).
Can you guess the mean and variance of the BP message when the number of observations grows to
infinity?

Problem 3.3 In this exercise, you will construct an undirected graphical model for the problem of
segmenting foreground and background in an image, and use loopy belief propagation to solve it. Load
the image flower.bmp into MATLAB using imread. (The command imshow may also come in handy.)
Partial labeling of the foreground and background pixels are given in the mask images foreground.bmp and
background.bmp, respectively. In each mask, the white pixels indicate positions of representative samples
of foreground or background pixels in the image. Let y = {yi} be an observed color image, so each yi
is a 3-vector (of RGB values between 0 and 1) representing the pixel indexed by i. Let x = {xi}, where
xi ∈ {0, 1} 2 is a foreground(1)/background(0) labeling of the image at pixel i. Let us say the probabilistic
model for x and y given by their joint distribution can be factored in the form

µ(x, y) =
1

Z

∏
i

φ(xi, yi)
∏

(j,k)∈E

ψ(xj , xk) (1)

where E is the set of all pairs of adjacent pixels in the same row or column as in 2-dimensional grid. Suppose
that we choose

ψ(xj , xk) =

{
0.9 if xj = xk
0.1 if xj 6= xk
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This encourages neighboring pixels to have the same label–a reasonable assumption. Suppose further that
we use a simple model for the conditional distribution φ(xi, yi) = PYi|Xi(yi|xi):

P(yi|xi = α) ∝ 1

(2π)3/2
√

detΛα
exp

{
− 1

2
(yi − µα)TΛ−1α (yi − µα)

}
+ ε

for yi ∈ [0, 1]3. That is, the distribution of color pixel values over the same type of image region is a modified
Gaussian distribution, where ε accounts for outliers. Set ε = 0.01 in this problem.

(a) Sketch an undirected graphical model that represents µ(x, y).

(b) Compute µα ∈ R3 and Λα ∈ R3×3 for each α ∈ {0, 1} from the labeled masks by finding the sample
mean and covariance of the RGB values of those pixels for which the label xi = α is known from
foreground.bmp and background.bmp. The sample mean of samples {y1, . . . , yN} is ȳ = 1

N

∑N
i=1 yi

and the sample covariance is Cy = 1
N−1

∑N
i=1(yi − ȳ)(yi − ȳ)T .

(c) We want to run the sum-product algorithm on the graph iteratively to find (approximately) the
marginal distribution µ(xi|y) at every i. For a joint distribution of the form (1) with pairwise compat-
ibility functions and singleton compatibility functions, the local message update rule for passing the
message νj→k(xj) from xj to xk, is represented in terms of the messages from the other neighbors of
xj , the potential functions.

νj→k(xj) ∝ φ(xj , yj)
∏

u∈∂j\k

∑
xu

ψ(xj , xu)νu→j(xu)

Then the final belief on xj is computed as

νj(xj) ∝ φ(xj , yj)
∏
u∈∂j

∑
xu

ψ(xj , xu)νu→j(xu)

Implement the sum-product algorithm for this problem. There are four directional messages: down,
up, left, and right, coming into and out of each xi (except at the boundaries). Use a parallel update
schedule, so all messages at all xi are updated at once. Run for 30 iterations (or you can state and
use some other reasonable termination criterion). Since we are working with binary random variables,
perhaps it is easier to pass messages in log-likelihood. Feel free to use gridbpsol.m from the website
for running the BP algorithm.
After the marginal distributions at the pixels are estimated, visualize their expectation. Where are the
beliefs “weak”?
Visualize the expectation after 1, 2, 3, and 4 iterations. Qualitatively, discuss where the loopy belief
propagation converge first and last.
Run BP with a different value of ε = 0 and comment on the result.
Run BP with a different pairwise potential and comment on the result.

ψ(xj , xk) =

{
0.6 if xj = xk
0.4 if xj 6= xk

Problem 3.4 Consider the Gaussian graphical model depicted below. More precisely, if we let x denote
the 4-dimensional vector of variables at the 4 nodes (ordered according to the node numbering given), then
x ∼ N−1(h, J), where J has diagonal values all equal to 1 and non-zero off-diagonal entries as indicated in
the figure (e.g., J12 = −ρ).
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(a) Confirm (e.g., by checking Sylvesters criterion to see if the determinants of all principal minors are
positive) that J is a valid information matrix–i.e., it is positive definite–if ρ = .39 or ρ = .4. Compute
the variances for each of the components (i.e., the diagonal elements of Λ = J−1)–you can use Matlab
to do this if youd like.

(b) We now want to examine Loopy BP for this model, focusing on the recursions for the information matrix
parameters. Write out these recursions in detail for this model. Implement these recursions and try for
ρ = .39 and ρ = .4. Describe the behavior that you observe.

(c) Construct the computation tree for this model. Note that the effective “J” – parameters for this model
are copies of the corresponding ones for the original model (so that every time the edge (1, 2) appears
in the computation tree, the corresponding J-component is −ρ). Use Matlab to check the positive-
definiteness of these implied models on computation trees for different depths and for our two different
values of ρ. What do you observe that would explain the result in part (b)?

Problem 3.5 In this problem, we apply inference techniques in graphical models to find Maximum Weight
Matching (MWM) in a complete bipartite graph. This is one of a few problems where belief propagation
converges and is correct on a general graph with loops. Other such examples include Gaussian graphical
models studied in class.

Consider an undirected weighted complete bipartite graph G(X,Y,E) where X is a set of n nodes and Y
is another set of n nodes: |X| = |Y | = n. In a bipartite complete graph all the nodes in X are connected to
all the nodes in Y and vice versa, as shown below. Further, each edge in this graph is associated with a real

a complete bipartite graph a perfect matching

valued weight wij ∈ R. A matching in a graph is a subset of edges such that no edges in this matching share a
node. A matching is a perfect matching if it matches all the nodes in the graph. Let π = (π(1), . . . , π(n)) be a
permutation of n nodes. In a bipartite graph, a permutation π defines a perfect matching {(i, π(i)}i∈{1,...,n}.
From now on, we use a permutation to represent a matching. A weight of a (perfect) matching is defined as
Wπ =

∑n
i=1 wi,π(i). The problem of maximum weight matching is to find a matching such that

π∗ = arg max
π

Wπ .
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We want to solve this maximization by introducing a graphical model with probabilty proportional to
the weight of a matching:

µ(π) =
1

Z
eCWπ I(π is a perfect matching) ,

for some constant C.

(a) The set of matchings can be encoded by a pair of vectors x ∈ {1, . . . , n}n and y ∈ {1, . . . , n}n, where
each node takes an integer value from 1 to n. With these, we can represent the joint distribution as a
pari-wise graphical model:

µ(x, y) =
1

Z

∏
(i,j)∈{1,...,n}2

ψij(xi, yj)

n∏
i=1

ewi,xi
n∏
i=1

ewyi,i ,

where ψij(xi, yj) =

 0 xi = j and yj 6= i ,
0 xi 6= j and yj = i ,
1 otherwise .

Show that for the pairwise graphical model defined

above, the joint distribution µ(x, y) is non-zero if and only if πx = {(1, x1), . . . , (n, xn)} and πy =
{(y1, 1), . . . , (yn, n)} both are matchings and πx = πy. Further, show that when non-zero, the probabil-
ity is equal to 1

Z e
2Wπx .

(b) Let

(x∗, y∗) = arg max
x,y

µ(x, y) .

Show that πx∗ = πx∗ is the maximum weight matching on the given graph G with weights {wij}.

(c) Let us denote by li the i-th ‘left’ node in X corresponding to the random variable xi, and by rj the j-th
‘right’ node in Y corresponding to the random variable yj . We are going to derive max-product update
rules for this problem. Let νli→rj (xi)

(t) denote the message from a left node li to a right node rj at t-th

iteration, which is a vector of size n. Similarly, we let νrj→li(yj)
(t) denote the message from a right node

rj to a leftt node li. We initialize all the messages such that

ν
(0)
li→rj (xi) = ewi,xi ,

ν
(0)
rj→li(yj) = ewyj,j .

Write the message update rule for the message ν
(t+1)
li→rj (xi) and ν

(t+1)
rj→li(yj) as functions of messages from

previous iterations.

Problem 3.6 [Optional] As mentioned in class, Gaussian BP allows to compute the minimum of a
quadratic function

x̂ = arg min
x∈Rn

{1

2
〈x,Qx〉+ 〈b, x〉

}
. (2)

for Q ∈ Rn×n positive definite, where 〈a, b〉 = aT b indicates the standard inner product of two vectors. In
this homework we will consider a case in which Q is not positive definite, but is symmetric and has full rank.
in this case we can still define

x̂ = −Q−1b . (3)
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which is a stationary point (a saddle point) of the above quadratic function. The BP update equations
are exactly the same as for the minimization problem with a positive definite Q. We claim that, when BP
converges, it still computes the correct solution x̂.

We consider a specific model. An unknown signal s0 ∈ Rn is observed in Gaussian noise

y = As0 + w0 . (4)

Here y ∈ Rm is a vector of observations, A ∈ Rm×n is a measurement matrix, and w0 ∈ Rm is a vector of
Gaussian noise, with i.i.d. entries w0,i ∼ N (0, σ2). We are given y and A, and would like to reconstruct the
unknown vector s0, and hence w0.

A popular method consists in solving the following quadratic programming problem (known as ridge
regression):

ŝ = arg min
s∈Rn

{1

2

∥∥y −As∥∥2
2

+
1

2
λ‖s‖22

}
. (5)

We will do something equivalent. For x ∈ Rm+n, x = (z, s), z ∈ Rm, s ∈ Rn, we define a cost function

CA,y(x = (z, s)) = −1

2
‖z‖22 +

1

2
λ‖s‖22 + 〈z, y −As〉 . (6)

We will look for the stationary point of CA,y.

(a) Show that the cost function CA,y(x) can be written in the form

CA,y(x) =
1

2
〈x,Qx〉+ 〈b, x〉 . (7)

Write explicitly the form of the matrix Q ∈ R(m+n)×(m+n) and the vector b ∈ Rm+n.

(b) Let x̂ = (ẑ, ŝ) be the stationary point of CA,y(z, s). Assuming it is unique, show that ŝ does coincide
with the ridge estimator (5).

(c) Write the update rule for the BP algorithm (equivalent to the sum-product algorithm) to compute the
stationary point x̂ = (ẑ, ŝ) of CA,y(x). [hint: use the same ideas from the Gaussian belief propagation
for positive definite Q.]

(d) Prove the above claim that, if BP converges, then it computes x̂, cf. Eq. (3) even if Q is not positive
definite.

Problem 3.7 [Density Evolution] In this problem we consider using Low-Density Parity Check (LDPC)
codes to encode bits to be sent over a noisy channel.

Encoding. LDPC codes are defined by a factor graph model over a bipartite graph G(V, F,E), where
V is the set of variable nodes, each representing the bit to be transmitted, and F is a set of factor nodes
describing the code and E is a west of edges between a bit-node and a factor node. The total number of
variable nodes in the graph define the length of the code (also known as the block length), which we denote
by n , |V |.

We consider binary variables xi ∈ {−1,+1} for i ∈ V , and all codewords that are transmitted satisfy∏
i∈∂a

xi = +1 ,

which means that there are even number of −1’s in the neighborhood of any factor node.
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Channel. We consider a Binary Symmetric Channel, known as BSC(ε), where one bit is transmitted over
the channel at each discrete time step, and each transmitted bit is independently flipped with probability ε.
Precisely, let xi ∈ {+1,−1} be a transmitted bit and yi ∈ {+1,−1} be the received bit (at time i), then

P(yi = +1|xi = +1) = 1− ε ,
P(yi = −1|xi = +1) = ε ,

P(yi = −1|xi = −1) = 1− ε ,
P(yi = +1|xi = −1) = ε .

The conditional probability distribution over xn1 = [x1, . . . , xn] given the observed received bits yn1 =
[y1, . . . , yn] is

µ(xn1 | yn1 ) =
1

Z

∏
i∈V

ψi(xi, yi)
∏
a∈F

I(⊗x∂a = +1) ,

where ψi(xi, yi) = P(yi|xi) and ⊗ indicates product of binary numbers such that if x∂a = {x1, x2, x3} then
⊗x∂a = x1 × x2 × x3 (to be precise we need to take ψi(xi|yi) = P(xi|yi), but this gives the exactly same
conditional distribution as above since any normalization with respect to yi’s are absorbed in the partition
function Z). This is naturally a graphical model on a factor graph G(V, F,E) defined by the LDPC code.

(a) Write down the belief propagation updates (also known as the (parallel) sum-product algorithm) for

this factor graph model for the messages {ν(t)i→a(·)}(i,a)∈E and {ν̃(t)a→i(·)}(i,a)∈E .

(b) What is the computational complexity (how many operations are required in terms of the degrees of
the variable and factor nodes) for updating one message νi→a(·) and one message ν̃a→i(·) respectively?

Explain how one can improve the computational complexity, to compute the message ν̃
(t)
a→i(·) exactly

in runtime O(da), where da is the degree of the factor node a.

(c) Now, we consider a different message passing algorithm introduced by Robert Gallager in 1963. The
following update rule is a message passing algorithm known as the Gallager A algorithm. Similar to
the belief propagation for BEC channels we studied in class, this algorithm also sends discrete messages

(as opposed to real-valued messages in part (a)). Both ν
(t)
i→a’s and ν̃

(t)
a→i’s are binary, i.e. in {+1,−1}.

ν
(t+1)
i→a =


+1 if ν̃

(t)
b→i = +1 for all b ∈ ∂i \ a ,

−1 if ν̃
(t)
b→i = −1 for all b ∈ ∂i \ a ,

yi otherwise ,

ν̃
(t)
a→i =

∏
j∈∂a\i

ν
(t)
j→a .

The interpretation of this update rule is that νi→a messages trust the received bit yi unless all of the
incoming messages disagree with yi, and ν̃a→i messages make sure that the consistency with respect
to I(⊗x∂a) is satisfied. In this algorithm, the messages take values in {+1,−1} and are the estimated
values of xi’s, as opposed to the distribution over those values as in belief propagation.

We assume that random (`, r)-regular bipartite graph is used to generate the LDPC code. In the
resulting random graph, all variable nodes have degree ` and all factor nodes have degree r. Among
all such graphs, a random graph is selected uniformly at random.

Define W (t) to be the (empirical) distribution of the messages {ν(t)i→a}(i,a)∈E and Z(t) to be the (empir-

ical) distribution of the messages {ν̃(t)a→i}(i,a)∈E . We assume the messages are initialized in such way

that ν
(0)
i→a = yi for all i ∈ V . We also assume, without loss of generality, that all +1 messages were
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sent, i.e. xi = +1 for all i. Then, let w(t) = P(W (t) = −1) be the probability that a message ν
(t)
i→a is

−1 for a randomly chosen edge (i, a), and let z(t) = P(Z(t) = −1) be the probability that a message

ν̃
(t)
a→i is −1 for a randomly chosen edge (i, a).

Write the density evolution equations for w(t) and z(t), describing how the random distribution of
the messages w(t) and z(t) evolve. [We are looking for a clean answer. Specifically, the number of
operations required to compute z(t) from w(t) should be O(1). The same technique that reduced
computation in part (b) should be helpful.]

(d) Write the density evolution equation for a single scalar variable w(t), by substituting z(t). This gives
a fixed point equation in the form of w(t) = F (w(t−1)) for some F . Plot (using MATLAB to your
favorite numerical analysis tool) the function y = F (x) and the identify function y = x, for ` = 3 and
r = 4, and for two values of ε = 0.05 and ε = 0.1 Explain the figure in terms of the error probability
of the (3,4)-code on those two BSC(ε)’s.
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