
IE 598 Inference in Graphical Models

Homework 3
Due-11/06/2012

Problem 3.1 Consider the following graphical model.

(a) Draw a factor graph representing the graphical model and specify the factor graph message-passing
equations. For this particular example, explain why the factor graph message-passing equations can
be used to compute the marginals, but the sum-product equations cannot be used.

(b) Define a new random variable x6 = {x1, x2, x3}, i.e., we group variables x1, x2, and x3 into one variable.
Draw an undirected graph which captures the relationship between x4, x5, and x6. Explain why you
can apply the sum-product algorithm to your new graph to compute the marginals. Compare the
belief propagation equations for the new graph with the factor graph message-passing equations you
obtained in part (a).

(c) If we take the approach from part (b) to the extreme, we can simply define a random variable x7 =
{x1, x2, x3, x4, x5}, i.e., define a new random variable which groups all five original random variables
together. Explain what running the sum-product algorithm on the corresponding one vertex graph
means. Assuming that we only care about the marginals for x1, x2, . . . , x5, can you think of a reason
why we would prefer the method in part (b) to the method in this part, i.e., why it might be preferable
to group a smaller number of variables together?

Solution 3.1

(a) The factor graph is a tree, so factor graph message-passing gives the exact answer. Since the original
undirected graph has a cycle, sum-product algorithm is not guaranteed to converge to the correct
answer.

1

b

a

c

The message update rules are:

ν1→a(x1) = 1/|X |
ν4→b(x4) = 1/|X |
ν5→c(x5) = 1/|X |
νb→2(x2) =

∑
x4

(1/|X |)ψ24(x2, x4)

νc→3(x3) =
∑
x5

(1/|X |)ψ35(x3, x5)

ν2→a(x2) = νb→2(x2)

ν3→a(x3) = νc→3(x3)

νa→1(x1) =
∑
x2,x3

ψ123(x1, x2, x3)ν2→a(x2)ν3→a(x3)

νa→2(x2) =
∑
x1,x3

ψ123(x1, x2, x3)ν1→a(x1)ν3→a(x3)

νa→3(x3) =
∑
x1,x2

ψ123(x1, x2, x3)ν1→a(x1)ν2→a(x2)

ν2→b(x2) = νa→2(x2)

ν3→c(x3) = νa→3(x3)

νb→4(x4) =
∑
x2

ψ24(x2, x4)

νc→5(x5) =
∑
x3

ψ35(x3, x5)

(b) Grouping x6 = {x1, x2, x3}, we get a tree. Then, we can apply sum-product algorithm with ψ46(x1, x2, x3, x4) =
ψ24(x2, x4), ψ56(x1, x2, x3, x5) = ψ35(x3, x5), and ψ6(x1, x2, x3) = ψ123(x1, x2, x3).

ν4→6(x4) = 1/|X |
ν5→6(x5) = 1/|X |
ν6→5(x6) =

∑
x4

(1/|X |)ψ6(x6)ψ46(x4, x6)

ν6→4(x6) =
∑
x5

(1/|X |)ψ6(x6)ψ56(x5, x6)

2

These equations involve similar computations to those done by the factor graph message-passing equa-
tions in part (a). However, there is one minor difference. Specifically, in factor graph message-passing
equations, we never had to deal with more than 3 variables at a time. The sum-product equations
above have several steps where four variables are involved (we count x6 are three variables since sum-
ming over x6 is more costly than summing over x4 or x5, assuming that all the original variables have
the same alphabet size). Thus, the factor graph message-passing equations are slightly more efficient
than the sum-product equations. We note that if the variables are grouped a slightly different fashion,
we can make the sum-product algorithm have the same complexity as the factor graph message-passing
algorithm from part (a). The idea is to form a better junction tree as shown below:

This is a junction tree, and the sum-product algorithm with trivial modifications involves only three
variables, matching the factor graph complexity. Using our standard notation, assume that the original
graph has clique potentials ψ123, ψ24, ψ35. Then, we absorb ψ’s into node potentials of the junction
tree and let the edge potentials enforce the consistency on the common nodes, i.e., ψ123,24 = I(x2 = x′2)
and ψ123,35 = I(x3 = x′3), which means that the x2 in the node {2, 4} must be identical to the x2 in
the node {1, 2, 3} node, etc.

Let us see what happens in the sum-product belief propagation. ν24→123(x2,4) = ψ24(x2,4), and
ν123→35(x1,2,3) = ψ123(x1, x2, x3)

∑
x4
ψ24(x2, x4). We can avoid repeating the same computation by

only summing out x4. Now, ν35→123(x3,5) = ψ35(x3,5), and ν123→24(x1,2,3) = ψ123(x1, x2, x3)
∑
x5
ψ35(x3, x5).

Again, we can avoid repeating the same computation by summing out x5 first. Thus, the junction tree
can match the factor graph in terms of complexity. In fact, as we have seen, the sum-product with a
few trivial modifications (i.e., don’t repeat the same computation/don’t sum over stuff we know is zero)
gets the same complexity as factor graph message-passing. The modifications are essentially what is
known as the Shafer-Shenoy algorithm.

(c) Because the graph has a single node, sum-product does nothing. If we want to get the marginal for
an individual variable, say x1, then this approach would use brute-force, i.e., sum over all values for
the remaining variables. Thus, we have a computation involving all 5 variables, whereas in part (b) we
never had to deal with more than 4 variables at a time. Thus, although grouping variables can produce
a tree, there is a cost to be paid - the more variables that are put into a single group, the higher the
computational cost for the sum-product algorithm.

Problem 3.2 Let x ∼ N−1(hx, Jx), and y = Cx+ v, where v ∼ N (0, R).

3

1. Find the potential vector hy|x and the information matrix Jy|x of p(y|x).

2. Find the potential vector hx,y and the information matrix Jx,y of p(x, y).

3. Find the potential vector hx|y and the information matrix Jx|y of p(x|y).

4. Consider the following Gaussian graphical model.

x1 x2 x3

x4

y1 y2

Let y1 = x1 + v1, y2 = x3 + v2, and R = I is the identity matrix. Find C. Represent messages hx3→x2

and Jx3→x2
in terms of y2 and the elements of hx and Jx.

5. Now assume that we have an additional measurement y3 = x3 + v3, where v3 is a zero-mean Gaussian
variable with variance 1 and is independent from all other variables. Find the new C. Represent
messages hx3→x2

and Jx3→x2
in terms of y2, y3 and the elements of hx and Jx.

6. The BP message from x3 to x2 define a Gaussian distribution with mean mx3→x2
= J−1x3→x2

hx3→x2
and

variance σx3→x2 = J−1x3→x2
. Comment on the difference in the mean and the variance of this message

when computed using a single observation y2 versus when computed using multiple observations (y2, y3).
Can you guess the mean and variance of the BP message when the number of observations grows to
infinity?

Solution 3.2

1.

p(y|x) ∝ exp
{
− 1

2
(y − Cx)TR−1(y − Cx)

}
Then, hy|x = xTCTR−1 and Jy|x = R−1.

2.

p(x, y) ∝ exp
{
− 1

2
(y − Cx)TR−1(y − Cx)

}
exp

{
− 1

2
xTJxx+ hTx x

}
= exp

{
− 1

2

[
x
y

]T [
Jx + CTR−1C −CTR−1
−R−1C R−1

] [
x
y

]
+

[
hx
0

]T [
x
y

]}
Then, hx,y =

[
hx
0

]
and Jx,y =

[
Jx + CTR−1C −CTR−1
−R−1C R−1

]
.

3. Computing conditionals from the information form is easy. hx|y = hx + CTR−1y and Jx|y = Jx +
CTR−1C.

4

4. For the given graphical model, C =

[
1 0 0 0
0 0 1 0

]
, since

[
y1
y2

]
=

[
1 0 0 0
0 0 1 0

]
x +

[
v1
v2

]
. From the

Gaussian BP update, we know that

hx3→x2
= hx3|y2 = hx3

+ y2

Jx3→x2
= Jx3|y2 = Jx3,x3

+ 1

hx3→x2 corresponds to our belief about the potential vector of random variable x3 given the observa-
tions, and Jx3→x2 corresponds to our belief about the information matrix of random variable x3 given
the observations.

5. With the new observation, C =

1 0 0 0
0 0 1 0
0 0 1 0

. From the Gaussian BP update, we get that

hx3→x2 = hx3|y2 = hx3 + y2 + y3

Jx3→x2 = Jx3|y2 = Jx3,x3 + 2

6. With one observation, the message is N (
hx3+y2
Jx3,x3+1 ,

1
Jx3,x3+1). With two observations, the message

is N (
hx3+y2+y3
Jx3,x3+2 , 1

Jx3,x3+2). As we get more observations, we get more accurate beliefs with smaller

variance. As we increase the number of observations m, our belief converges to a deterministic scalar
value 1

m

∑m
i=1 yi.

Problem 3.3 In this exercise, you will construct an undirected graphical model for the problem of
segmenting foreground and background in an image, and use loopy belief propagation to solve it. Load
the image flower.bmp into MATLAB using imread. (The command imshow may also come in handy.)
Partial labeling of the foreground and background pixels are given in the mask images foreground.bmp and
background.bmp, respectively. In each mask, the white pixels indicate positions of representative samples
of foreground or background pixels in the image. Let y = {yi} be an observed color image, so each yi
is a 3-vector (of RGB values between 0 and 1) representing the pixel indexed by i. Let x = {xi}, where
xi ∈ {0, 1} 2 is a foreground(1)/background(0) labeling of the image at pixel i. Let us say the probabilistic
model for x and y given by their joint distribution can be factored in the form

µ(x, y) =
1

Z

∏
i

φ(xi, yi)
∏

(j,k)∈E

ψ(xj , xk) (1)

where E is the set of all pairs of adjacent pixels in the same row or column as in 2-dimensional grid. Suppose
that we choose

ψ(xj , xk) =

{
0.9 if xj = xk
0.1 if xj 6= xk

This encourages neighboring pixels to have the same label–a reasonable assumption. Suppose further that
we use a simple model for the conditional distribution φ(xi, yi) = PYi|Xi(yi|xi):

P(yi|xi = α) ∝ 1

(2π)3/2
√

detΛα
exp

{
− 1

2
(yi − µα)TΛ−1α (yi − µα)

}
+ ε

for yi ∈ [0, 1]3. That is, the distribution of color pixel values over the same type of image region is a modified
Gaussian distribution, where ε accounts for outliers. Set ε = 0.01 in this problem.

(a) Sketch an undirected graphical model that represents µ(x, y).

5

(b) Compute µα ∈ R3 and Λα ∈ R3×3 for each α ∈ {0, 1} from the labeled masks by finding the sample
mean and covariance of the RGB values of those pixels for which the label xi = α is known from
foreground.bmp and background.bmp. The sample mean of samples {y1, . . . , yN} is ȳ = 1

N

∑N
i=1 yi

and the sample covariance is Cy = 1
N−1

∑N
i=1(yi − ȳ)(yi − ȳ)T .

(c) We want to run the sum-product algorithm on the graph iteratively to find (approximately) the
marginal distribution µ(xi|y) at every i. For a joint distribution of the form (1) with pairwise compat-
ibility functions and singleton compatibility functions, the local message update rule for passing the
message νj→k(xj) from xj to xk, is represented in terms of the messages from the other neighbors of
xj , the potential functions.

νj→k(xj) ∝ φ(xj , yj)
∏

u∈∂j\k

∑
xu

ψ(xj , xu)νu→j(xu)

Then the final belief on xj is computed as

νj(xj) ∝ φ(xj , yj)
∏
u∈∂j

∑
xu

ψ(xj , xu)νu→j(xu)

Implement the sum-product algorithm for this problem. There are four directional messages: down,
up, left, and right, coming into and out of each xi (except at the boundaries). Use a parallel update
schedule, so all messages at all xi are updated at once. Run for 30 iterations (or you can state and
use some other reasonable termination criterion). Since we are working with binary random variables,
perhaps it is easier to pass messages in log-likelihood. Feel free to start from gridbp.m and fill in the
missing functions (most of the algorothm is already implemented).
After the marginal distributions at the pixels are estimated, visualize their expectation. Where are the
beliefs “weak”?
Visualize the expectation after 1, 2, 3, and 4 iterations. Qualitatively, discuss where the loopy belief
propagation converge first and last.
Run BP with a different value of ε = 0 and comment on the result.
Run BP with a different pairwise potential and comment on the result.

ψ(xj , xk) =

{
0.6 if xj = xk
0.4 if xj 6= xk

6

Solution 3.3

(a) We can use the following graphical model.

(b) The sample statistics are:

µ1 =

 0.6600
0.3733
0.0333

 , Λ1 =

 0.0558 0.0632 0.0009
0.0632 0.0807 0.0009
0.0009 0.0009 0.0004

µ0 =

 0.3090
0.3102
0.1617

 , Λ0 =

 0.0787 0.0712 0.0482
0.0712 0.0682 0.0463
0.0482 0.0463 0.0340

(c) Note that the messages can be represented by two-vectors, as they are functions of xk, which take

on binary values. During the first iteration, the messages from x neighbors should be uninformative
(equivalent to not being in the product of the sum-product), so these messages are initialized to [0.5
0.5] in the algorithm. Here is the expectation of the marginal beliefs, or well just call them beliefs,
since they are binary. We see that the beliefs are “weakest” (or rather, most ambivalent) along the

Figure 1: Visualized is E[x|y]. Values nearer to 0.5 are more ambivalent beliefs.

boundary between foreground and background.

7

Next, we show the beliefs based on local evidence alone, that is, the values you have before any messages
are passed.

Figure 2: Beliefs at iteration 0.

The absolute-value changes to the beliefs for the first 4 iterations are shown next. As the iterative
algorithm runs, more and more variable nodes “settle” as the messages coming into them “settle.”

Figure 3: Most beliefs become firm very quickly.

The last places to converge are atypical regions, such as what may be mistaken as background in a
foreground region, and vice versa, notably, on the boundary where the final beliefs turn out to be closest to
[0.5 0.5].

Loopy belief propagation actually works really well here. These beliefs can be used as an alpha map to
cut out the foreground, for example:

When ε = 0, the algorithm is less robust to outliers, and we see a lot of ‘holes’ in the foreground due to
outliers.

8

Figure 4: The original image and its alpha-masked foreground cutout.

Figure 5: BP estimation after 5 iterations with ε = 0.

When ψ(xj , xk) = 0.6 if xj = xk and 0.4 if xj 6= xk, the correlation between adjacent nodes are weaker
and the estimation is closer to what is given by the singleton potentials.

Figure 6: BP estimation with a new pairwise potential.

9

Problem 3.4 Consider the Gaussian graphical model depicted below. More precisely, if we let x denote
the 4-dimensional vector of variables at the 4 nodes (ordered according to the node numbering given), then
x ∼]cN−1(h, J), where J has diagonal values all equal to 1 and non-zero off-diagonal entries as indicated in
the figure (e.g., J12 = −ρ).

(a) Confirm (e.g., by checking Sylvesters criterion to see if the determinants of all principal minors are
positive) that J is a valid information matrix–i.e., it is positive definite–if ρ = .39 or ρ = .4. Compute
the variances for each of the components (i.e., the diagonal elements of Λ = J−1)–you can use Matlab
to do this if youd like.

(b) We now want to examine Loopy BP for this model, focusing on the recursions for the information matrix
parameters. Write out these recursions in detail for this model. Implement these recursions and try for
ρ = .39 and ρ = .4. Describe the behavior that you observe.

(c) Construct the computation tree for this model. Note that the effective “J” – parameters for this model
are copies of the corresponding ones for the original model (so that every time the edge (1, 2) appears
in the computation tree, the corresponding J-component is −ρ). Use Matlab to check the positive-
definiteness of these implied models on computation trees for different depths and for our two different
values of ρ. What do you observe that would explain the result in part (b)?

Solution 3.4

(a) The information matrix is given by:
1 −ρ ρ ρ
−ρ 1 ρ 0
ρ ρ 1 ρ
ρ 0 ρ 1

The eigenvalues are (2ρ+ 1, ρ+ 1,−2ρ+ 1,−ρ+ 1). When −0.5 < ρ < 0.5, all eigenvalues are positive;

thus J is positive definite for rho = 0.39 and ρ = 0.4. We can compute that Λ11 = Λ33 = −2ρ2+1
4ρ4−5ρ2+1 ,

Λ22 = ρ−1
2ρ2+ρ−1 , and Λ44 = −ρ−1

2ρ2−ρ−1

(b) The Gaussian BP update rule for the information matrix is:

Ji→j ∝ Jii −
∑

k∈∂i\j

JikJ
−1
k→iJki

10

When ρ = 0.39, the BP update information matrices converge to the following fixed-point:

J2→1 ' 0.7060

J3→1 ' 0.5691

J4→1 ' 0.7060

J1→2 ' 0.5173

J3→2 ' 0.5173

J1→3 ' 0.5691

J2→3 ' 0.7060

J4→3 ' 0.7060

J1→4 ' 0.5173

J3→4 ' 0.5173

When ρ = 0.4, there is no steady state value, and below is shown an example for J2→1.

(c) Computation trees from the perspective of node 1 and node 2 are shown below. Let us consider the

information matrix from the perspective of node 1. After one iteration we have:

J1 =

1 −ρ ρ ρ
−ρ 1 0 0
ρ 0 1 0
ρ 0 0 1

11

After 2 iterations:

J2 =

1 −ρ ρ ρ 0 0 0 0
−ρ 1 0 0 ρ 0 0 0
ρ 0 1 0 0 ρ ρ 0
ρ 0 0 1 0 0 0 ρ
0 ρ 0 0 1 0 0 0
0 0 ρ 0 0 1 0 0
0 0 ρ 0 0 0 1 0
0 0 0 ρ 0 0 0 1

This matrix is not positive definite for ρ > 0.4760. After three iterations the following information
matrix: Following in this fashion, J3 after three iterations is not positive definite for ρ > 0.4473, and J4
is not positive definite for ρ?0.4309. If we continue like this, after a few more iterations, we will reach a
point such that J is not positive definite for ρ > 0.4. However, we will never get to a point such that J
is not positive definite for ρ > 0.39. Since the computation tree implies an invalid information matrix
when ρ > 0.4, it isnt very surprising that loopy BP behaves so badly in this case.

Problem 3.5 In this problem, we apply inference techniques in graphical models to find Maximum
Weight Matching (MWM) in a complete bipartite graph. This is one of a few problems where belief propaga-
tion converges and is correct on a general graph with loops. Other such examples include Gaussian graphical
models studied in class.

Consider an undirected weighted complete bipartite graph G(X,Y,E) where X is a set of n nodes and Y
is another set of n nodes: |X| = |Y | = n. In a bipartite complete graph all the nodes in X are connected to
all the nodes in Y and vice versa, as shown below. Further, each edge in this graph is associated with a real

a complete bipartite graph a perfect matching

valued weight wij ∈ R. A matching in a graph is a subset of edges such that no edges in this matching share a
node. A matching is a perfect matching if it matches all the nodes in the graph. Let π = (π(1), . . . , π(n)) be a
permutation of n nodes. In a bipartite graph, a permutation π defines a perfect matching {(i, π(i)}i∈{1,...,n}.
From now on, we use a permutation to represent a matching. A weight of a (perfect) matching is defined as
Wπ =

∑n
i=1 wi,π(i). The problem of maximum weight matching is to find a matching such that

π∗ = arg max
π

Wπ .

We want to solve this maximization by introducing a graphical model with probabilty proportional to
the weight of a matching:

µ(π) =
1

Z
eCWπ I(π is a perfect matching) ,

for some constant C.

12

(a) The set of matchings can be encoded by a pair of vectors x ∈ {1, . . . , n}n and y ∈ {1, . . . , n}n, where
each node takes an integer value from 1 to n. With these, we can represent the joint distribution as a
pari-wise graphical model:

µ(x, y) =
1

Z

∏
(i,j)∈{1,...,n}2

ψij(xi, yj)

n∏
i=1

ewi,xi
n∏
i=1

ewyi,i ,

where ψij(xi, yj) =

 0 xi = j and yj 6= i ,
0 xi 6= j and yj = i ,
1 otherwise .

Show that for the pairwise graphical model defined

above, the joint distribution µ(x, y) is non-zero if and only if πx = {(1, x1), . . . , (n, xn)} and πy =
{(y1, 1), . . . , (yn, n)} both are matchings and πx = πy. Further, show that when non-zero, the probabil-
ity is equal to 1

Z e
2Wπx .

(b) Let

(x∗, y∗) = arg max
x,y

µ(x, y) .

Show that πx∗ = πx∗ is the maximum weight matching on the given graph G with weights {wij}.

(c) Let us denote by li the i-th ‘left’ node in X corresponding to the random variable xi, and by rj the j-th
‘right’ node in Y corresponding to the random variable yj . We are going to derive max-product update
rules for this problem. Let νli→rj (xi)

(t) denote the message from a left node li to a right node rj at t-th

iteration, which is a vector of size n. Similarly, we let νrj→li(yj)
(t) denote the message from a right node

rj to a leftt node li. We initialize all the messages such that

ν
(0)
li→rj (xi) = ewi,xi ,

ν
(0)
rj→li(yj) = ewyj,j .

Write the message update rule for the message ν
(t+1)
li→rj (xi) and ν

(t+1)
rj→li(yj) as functions of messages from

previous iterations.

Solution 3.5

(a) From the definition of the pair-wise compatibility function, we claim that the probability is non-zero if
and only if πx = πy. First we prove the ‘if’ part. Suppose πx = πy, that is yxi = i. Then, for a pair (i, j)
which is included in the matching πx, ψij(xi, yj) = 1 since xi = j and yj = i. For a pair (i, j) which is
not included in the matching πx, ψij(xi, yj) = 1 since xi 6= j and yj 6= i. Hence, if πx = πy, then the
probability is non-zero.

Now we prove the the ‘only if’ part. Suppose πx 6= πy, that is there exists a pair of nodes (i, j) such
that j = xi but i 6= yj . It follows that ψij(xi, yj) = 0, and this finishes the proof.

When the probability is non-zero, it follows that x and y define matchings πx and πy. Then, all
the pairwise compatibility functions are one, and we are left to evaluate the singleton compatibility
functions. Notice that

∏
i e
wi,xi = e

∑
i wi,xi = eWπx , and similarly

∏
i e
wyi,i = eWπy . This proveos that

µ(x) = 1
Z e

2Wπx .

(b) Since the probability is a monotone increasing function of the weight, solving for the maximum proba-
bility realization recovers the maximum weight matching.

13

(c) From the max-product algorithm definition, and noting that this is a complete graph,

ν
(t+1)
li→rj (xi) = ewi,xi

∏
k 6=j

max
yk∈{1,...,n}

ψi,k(xi, yk)ν
(t)
rk→li(yk) ,

ν
(t+1)
rj→li(yj) = ewyj,j

∏
k 6=i

max
xk∈{1,...,n}

ψk,j(xk, yj)ν
(t+1)
lk→rj (xk) .

We can further simplify this exploiting the structure of ψij()’s.

ν
(t+1)
li→rj (xi) =

ewi,xi

∏
k 6=j

max
yk 6=i

ν
(t)
rk→li(yk) if xi = j ,

ewi,xi ν
(t)
rxi→li

(yxi = i)
∏

k/∈{j,xi}

max
yk 6=i

ψi,k(xi, yk) ν
(t)
rk→li(yk) otherwise ,

Now, let’s further simplify this formula. Notice that when xi 6= j, maxyk 6=i ψi,k(xi, yk) ν
(t)
rk→li(yk) =

maxyk 6=i ν
(t)
rk→li(yk), since ψi,k(xi 6= k, yk 6= i) = 1.

ν
(t+1)
li→rj (xi) =

ewi,xi

∏
k 6=j

max
yk 6=i

ν
(t)
rk→li(yk) if xi = j ,

ewi,xi ν
(t)
rxi→li

(yxi = i)
∏

k/∈{j,xi}

max
yk 6=i

ν
(t)
rk→li(yk) otherwise ,

Then, we can scale the messages by

1(
ewi,xi

∏
k 6=j maxyk 6=i ν

(t)
rk→li(yk)

)
to get

ν
(t+1)
li→rj (xi) =

1 if xi = j ,

ν
(t)
rxi→li

(yxi = i)

maxyxi 6=i ν
(t)
rxi→li

(yxi)
otherwise .

Problem 3.6 As mentioned in class, Gaussian BP allows to compute the minimum of a quadratic function

x̂ = arg min
x∈Rn

{1

2
〈x,Qx〉+ 〈b, x〉

}
. (2)

for Q ∈ Rn×n positive definite, where 〈a, b〉 = aT b indicates the standard inner product of two vectors. In
this homework we will consider a case in which Q is not positive definite, but is symmetric and has full rank.
in this case we can still define

x̂ = −Q−1b . (3)

which is a stationary point (a saddle point) of the above quadratic function. The BP update equations
are exactly the same as for the minimization problem with a positive definite Q. We claim that, when BP
converges, it still computes the correct solution x̂.

We consider a specific model. An unknown signal s0 ∈ Rn is observed in Gaussian noise

y = As0 + w0 . (4)

14

Here y ∈ Rm is a vector of observations, A ∈ Rm×n is a measurement matrix, and w0 ∈ Rm is a vector of
Gaussian noise, with i.i.d. entries w0,i ∼ N (0, σ2). We are given y and A, and would like to reconstruct the
unknown vector s0, and hence w0.

A popular method consists in solving the following quadratic programming problem (known as ridge
regression):

ŝ = arg min
s∈Rn

{1

2

∥∥y −As∥∥2
2

+
1

2
λ‖s‖22

}
. (5)

We will do something equivalent. For x ∈ Rm+n, x = (z, s), z ∈ Rm, s ∈ Rn, we define a cost function

CA,y(x = (z, s)) = −1

2
‖z‖22 +

1

2
λ‖s‖22 + 〈z, y −As〉 . (6)

We will look for the stationary point of CA,y.

(a) Show that the cost function CA,y(x) can be written in the form

CA,y(x) =
1

2
〈x,Qx〉+ 〈b, x〉 . (7)

Write explicitly the form of the matrix Q ∈ R(m+n)×(m+n) and the vector b ∈ Rm+n.

(b) Let x̂ = (ẑ, ŝ) be the stationary point of CA,y(z, s). Assuming it is unique, show that ŝ does coincide
with the ridge estimator (5).

(c) Write the update rule for the BP algorithm (equivalent to the sum-product algorithm) to compute the
stationary point x̂ = (ẑ, ŝ) of CA,y(x). [hint: use the same ideas from the Gaussian belief propagation
for positive definite Q.]

(d) Prove the above claim that, if BP converges, then it computes x̂, cf. Eq. (3) even if Q is not positive
definite.

Solution 3.6

(a) The cost function is

CA,y(x = (z, s)) = −1

2

[
z s

] [I A
AT −λI

] [
z
s

]
+
[
y 0

] [z
s

]
=

1

2
〈x,Qx〉+ 〈b, x〉 ,

where Q = −
[
I A
AT −λI

]
and b =

[
y
0

]
.

(b) The stationary point of the quadratic form is given by

∇CA,y(x) = Qx+ b

setting the gradient to zero, we get x̂ = −Q−1b. In terms of the original values we get,[
ẑ
ŝ

]
=

[
I A
AT −λI

]−1 [
y 0

]
=

[
(I + 1

λAA
T)−1 1

λ (I + 1
λAA

T)−1A
1
λA

T (I + 1
λAA

T)−1 − 1
λI + 1

λ2A
T (I + 1

λAA
T)−1A

] [
y 0

]
.

15

hence,

ŝ = AT (AAT + λI)−1y

equivalently, one can also write

ŝ = (ATA+ λI)−1AT y

both are valid solutions.

(c) the BP updates are

h
(t+1)
i→j = −bi −

∑
k∈∂i\j

Qik

J
(t)
k→i

h
(t)
k→i

J
(t+1)
i→j = Qii −

∑
k∈∂i\j

Q2
ij

J
(t)
k→i

It is okay to drop the superscript for the time t, and also change the signs of the messages, as long as
they compute the correct marginal in the end. For example, the following is also a valid BP update.

h
(t+1)
i→j = −bi +

∑
k∈∂i\j

Qik

J
(t)
k→i

h
(t)
k→i

J
(t+1)
i→j = −Qii −

∑
k∈∂i\j

Q2
ij

J
(t)
k→i

(d) Consider the belief propagation and the corresponding computation tree TG(i; `). We know that the
correct solution is

x̂ = −Q−1b

We will show that assuming the BP converges, the BP estimates lim`→∞ x̂(`) = x̂(∞) is the same as x̂
above.

The only difference in the proof for Q that is not necessarily positive definite is that we don’t know if
the BP computes the correct solution (the mean) on a tree. Once we prove this claim, then we are done,
since all the proof techniques follow from the lecture notes.

Problem 3.7 [Density Evolution] In this problem we consider using Low-Density Parity Check (LDPC)
codes to encode bits to be sent over a noisy channel.

Encoding. LDPC codes are defined by a factor graph model over a bipartite graph G(V, F,E), where
V is the set of variable nodes, each representing the bit to be transmitted, and F is a set of factor nodes
describing the code and E is a west of edges between a bit-node and a factor node. The total number of
variable nodes in the graph define the length of the code (also known as the block length), which we denote
by n , |V |.

We consider binary variables xi ∈ {−1,+1} for i ∈ V , and all codewords that are transmitted satisfy∏
i∈∂a

xi = +1 ,

which means that there are even number of −1’s in the neighborhood of any factor node.

16

Channel. We consider a Binary Symmetric Channel, known as BSC(ε), where one bit is transmitted over
the channel at each discrete time step, and each transmitted bit is independently flipped with probability ε.
Precisely, let xi ∈ {+1,−1} be a transmitted bit and yi ∈ {+1,−1} be the received bit (at time i), then

P(yi = +1|xi = +1) = 1− ε ,
P(yi = −1|xi = +1) = ε ,

P(yi = −1|xi = −1) = 1− ε ,
P(yi = +1|xi = −1) = ε .

The conditional probability distribution over xn1 = [x1, . . . , xn] given the observed received bits yn1 =
[y1, . . . , yn] is

µ(xn1 | yn1) =
1

Z

∏
i∈V

ψi(xi, yi)
∏
a∈F

I(⊗x∂a = +1) ,

where ψi(xi, yi) = P(yi|xi) and ⊗ indicates product of binary numbers such that if x∂a = {x1, x2, x3} then
⊗x∂a = x1 × x2 × x3 (to be precise we need to take ψi(xi|yi) = P(xi|yi), but this gives the exactly same
conditional distribution as above since any normalization with respect to yi’s are absorbed in the partition
function Z). This is naturally a graphical model on a factor graph G(V, F,E) defined by the LDPC code.

(a) Write down the belief propagation updates (also known as the (parallel) sum-product algorithm) for

this factor graph model for the messages {ν(t)i→a(·)}(i,a)∈E and {ν̃(t)a→i(·)}(i,a)∈E .

(b) What is the computational complexity (how many operations are required in terms of the degrees of
the variable and factor nodes) for updating one message νi→a(·) and one message ν̃a→i(·) respectively?

Explain how one can improve the computational complexity, to compute the message ν̃
(t)
a→i(·) exactly

in runtime O(da), where da is the degree of the factor node a.

(c) Now, we consider a different message passing algorithm introduced by Robert Gallager in 1963. The
following update rule is a message passing algorithm known as the Gallager A algorithm. Similar to
the belief propagation for BEC channels we studied in class, this algorithm also sends discrete messages

(as opposed to real-valued messages in part (a)). Both ν
(t)
i→a’s and ν̃

(t)
a→i’s are binary, i.e. in {+1,−1}.

ν
(t+1)
i→a =

+1 if ν̃

(t)
b→i = +1 for all b ∈ ∂i \ a ,

−1 if ν̃
(t)
b→i = −1 for all b ∈ ∂i \ a ,

yi otherwise ,

ν̃
(t)
a→i =

∏
j∈∂a\i

ν
(t)
j→a .

The interpretation of this update rule is that νi→a messages trust the received bit yi unless all of the
incoming messages disagree with yi, and ν̃a→i messages make sure that the consistency with respect
to I(⊗x∂a) is satisfied. In this algorithm, the messages take values in {+1,−1} and are the estimated
values of xi’s, as opposed to the distribution over those values as in belief propagation.

We assume that random (`, r)-regular bipartite graph is used to generate the LDPC code. In the
resulting random graph, all variable nodes have degree ` and all factor nodes have degree r. Among
all such graphs, a random graph is selected uniformly at random.

Define W (t) to be the (empirical) distribution of the messages {ν(t)i→a}(i,a)∈E and Z(t) to be the (empir-

ical) distribution of the messages {ν̃(t)a→i}(i,a)∈E . We assume the messages are initialized in such way

that ν
(0)
i→a = yi for all i ∈ V . We also assume, without loss of generality, that all +1 messages were

17

sent, i.e. xi = +1 for all i. Then, let w(t) = P(W (t) = −1) be the probability that a message ν
(t)
i→a is

−1 for a randomly chosen edge (i, a), and let z(t) = P(Z(t) = −1) be the probability that a message

ν̃
(t)
a→i is −1 for a randomly chosen edge (i, a).

Write the density evolution equations for w(t) and z(t), describing how the random distribution of
the messages w(t) and z(t) evolve. [We are looking for a clean answer. Specifically, the number of
operations required to compute z(t) from w(t) should be O(1). The same technique that reduced
computation in part (b) should be helpful.]

(d) Write the density evolution equation for a single scalar variable w(t), by substituting z(t). This gives
a fixed point equation in the form of w(t) = F (w(t−1)) for some F . Plot (using MATLAB to your
favorite numerical analysis tool) the function y = F (x) and the identify function y = x, for ` = 3 and
r = 4, and for two values of ε = 0.05 and ε = 0.1 Explain the figure in terms of the error probability
of the (3,4)-code on those two BSC(ε)’s.

Solution 3.7

(a)

ν
(t+1)
i→a (xi) = P(yi|xi)

∏
b∈∂i\a

ν̃
(t)
b→i(xi)

ν̃
(t)
a→i(xi) =

∑
x∂a\i

I(⊗x∂a = +1)
∏

j∈∂a\i

ν
(t)
j→a(xj)

(b) Naive implementation of the above update rule take O(di) operations to update ν
(t+1)
i→a (·) and O(2dada)

operations to update ν̃
(t)
a→i(·), where di and da are the degrees of the variable node xi and the factor

node a respectively. However, we can use the Fourier transform of the binary variables in order to

simplify the computation of updating ν̃
(t)
a→i(·). Note that we can write the update rule as

ν̃
(t)
a→i(xi = +1) =

∑
x∂a\i

I(⊗x∂a = +1)
∏

j∈∂a\i

ν
(t)
j→a(xj)

=
1

2

(∏
j∈∂a\i

(
ν
(t)
j→a(+1) + ν

(t)
j→a(−1)

)
+

∏
j∈∂a\i

(
ν
(t)
j→a(+1)− ν(t)j→a(−1)

))
.

This requires O(da) operations to compute, and similar computation of ν̃
(t)
a→i(xi = −1) exists.

(c) Given the initialization, we have w(0) = ε. And the update rules are

w(t+1) = (z(t))`−1 + (1− (z(t))`−1 − (1− z(t))`−1)ε ,

z(t) =
1

2

(
1− (1− 2w(t))r−1

)
.

(d) When ε = 0.05, the error probability goes to zero, whereas when ε = 0.1, the error proabability does
not decay to zero.

18

when ε = 0.05 when ε = 0.1

19

