IE 598 Inference in Graphical Models

Homework 4

Problem 4.1 [Optional] (Sampling) In this problem, we use the Cheeger's inequality from class to upper bound the mixing time of a Markov chain by lower bounding the conductance of the Markov chain. Consider a distribution over matchings in a graph. A matching in a graph $G=(V, E)$ is a subsets of edges such that no two edges share a vertex. Here we focus on the special case of a complete bipartite graph G with vertices v_{1}, \ldots, v_{N} on the left and u_{1}, \ldots, u_{N} on the right, as shown:

In such a graph, a perfect matching is a matching which includes N edges. We are interested in sampling from a distribution over perfect matchings. We can denote a perfect matching using the variables $\sigma=$ $\left[\sigma_{i j}\right] \in\{0,1\}^{N \times N}$, where $\sigma_{i j}=1$ is v_{i} and u_{j} are matched and $\sigma_{i j}=0$ otherwise. Observe that σ is a perfect matching if and only if

$$
\begin{array}{ll}
\sum_{k=1}^{N} \sigma_{i k}=1 & \text { for all } 1 \leq i \leq N \\
\sum_{k=1}^{N} \sigma_{k j}=1 & \text { for all } 1 \leq j \leq N
\end{array}
$$

A perfect matching σ can also be thought of as a permutation $\sigma:\{1, \ldots, N\} \rightarrow\{1, \ldots, N\}$. For example, if $\sigma_{12}=\sigma_{21}=\sigma_{33}=1$, this would correspond to the permutation $\sigma(1)=2, \sigma(2)=1$, and $\sigma(3)=3$.

Consider the distribution defined by a set of weights on the edges $w_{i j} \geq 0$ for all i and j such that

$$
\begin{aligned}
\mu(\sigma) & \propto \exp \left\{\sum_{i, j} w_{i j} \sigma_{i j}\right\} \mathbb{I}(\sigma \text { is a perfect matching }) \\
& =\exp \left\{\sum_{i} w_{i \sigma(i)}\right\} \mathbb{I}(\sigma \text { is a perfect matching })
\end{aligned}
$$

(a) First, in this part, consider the uniform distribution over perfect matchings, i.e., $w_{i j}=0$ for all i, j. Describe a simple procedure to sample σ from this uniform distribution.
(b) Now for the weighted distribution, show that for any perfect matching σ,

$$
\mu(\sigma) \geq \frac{1}{N!\exp \left(N w^{*}\right)}
$$

where $w^{*}=\max _{i, j} w_{i j}$.
(c) Consider the Metropolis-Hastings rule defined by: choose $i, i^{\prime} \in\{1, \ldots, N\}$ uniformly at random. If $i=i^{\prime}$, do nothing, otherwise with probability

$$
R=\min \left\{1, \exp \left(w_{i \sigma\left(i^{\prime}\right)}+w_{i^{\prime} \sigma(i)}-w_{i \sigma(i)}-w_{i^{\prime} \sigma\left(i^{\prime}\right)}\right)\right\}
$$

swap $\sigma(i)$ and $\sigma\left(i^{\prime}\right)$, i.e. define a new permutation σ^{\prime} such that $\sigma^{\prime}(j)=\sigma(j)$ for $j \neq i, i^{\prime}$ and $\sigma^{\prime}(i)=\sigma\left(i^{\prime}\right)$ and $\sigma^{\prime}\left(i^{\prime}\right)=\sigma(i)$.
Show that, under this Markov chain, for any valid transition $\sigma \rightarrow \sigma^{\prime}$,

$$
\begin{aligned}
\mathbb{P}_{\sigma, \sigma^{\prime}} & =\mathbb{P}\left(\text { next state is } \sigma^{\prime} \mid \text { currect state is } \sigma\right) \\
& \geq \frac{1}{N^{2} \exp \left(2 w^{*}\right)} .
\end{aligned}
$$

(d) For the conductance of this Markov chain, argue using (b) and (c) that

$$
\begin{aligned}
\Phi & =\min _{S} \frac{\sum_{\sigma \in S, \sigma^{\prime} \in S^{c}} \mu(\sigma) \mathbb{P}_{\sigma, \sigma^{\prime}}}{\mu(S) \mu\left(S^{c}\right)} \\
& \geq \frac{1}{N!N^{2} \exp \left((N+2) w^{*}\right)}
\end{aligned}
$$

where S is a set states (or matchings), S^{c} is the complement of S, and $\mu(S)=\sum_{\sigma \in S} \mu(\sigma)$.
(e) Using (d), obtain a bound on the mixing time of the Markov chain.

Problem 4.2 (Sampling) In this problem, we develop an efficient algorithm for sampling from a twodimensional Ising model building on the naive Gibbs sampling. In particular, suppose all variables $x_{i j}$ take values in $\{+1,-1\}$. Using the graph structure G shown below, define the distribution

$$
\mu_{\theta}(x)=\frac{1}{Z_{\theta}} \exp \left\{\sum_{(i j, k l) \in E} \theta x_{i j} x_{k l}\right\} .
$$

(a) Derive the update rules for a node-by-node Gibbs sampler for this model. Implement the sampler in Matlab and run it for $3,600,000$ iterations on an Ising model of size 60×60 with coupling parameter $\theta=0.45$. Use uniformly random initialization of $x_{i j}=+1$ with probability 0.5 and $x_{i j}=-1$ otherwise. Show one instance of the state of the variables after every 360,000 iterations. For a 60×60 matrix $x \in$ $\{-1,+1\}^{60 \times 60}$, you can use MATLAB commands imagesc (x); colormap gray; axis off; to display the state x.
(b) Suppose we are given a tree-structured undirected graphical model T with variables $y=\left(y_{1}, \ldots, y_{N}\right)$. Give an efficient procedure for sampling from the joint $\mu(y)$.
(c) In block Gibbs sampling, we partition a graph into r subsets A_{1}, \ldots, A_{r}. In each iteration, for each A_{i}, we sample $x_{A_{i}}$ from the conditional distribution $\mu\left(x_{A_{i}} \mid x_{V \backslash A_{i}}\right)$. For the Ising model G described above, consider the two comb-shaped subsets A and B shown below. Describe how to use your sampler from part (b) to perform the block Gibbs updates. (For this part, you may assume a black-box implementation of your sampling procedure from part (b).).

(d) We provide an implementation of the block Gibbs sampler from part (c) in comb_gibbs_step.m, comb_sum_product.m, ising_gibbs_comb.m. As in part (a), we set $\theta=0.45$ and run the sampler for 1000 iterations updating A and then B at every iteration. Run the block Gibbs sampler in ising_gibbs_comb.m and analyze the state of the variables after every 100 iterations. Which of the two samplers appears to mix faster?

