
IE 598 Inference in Graphical Models

Homework 4

Problem 4.1 [Optional] (Sampling) In this problem, we use the Cheeger’s inequality from class to
upper bound the mixing time of a Markov chain by lower bounding the conductance of the Markov chain.
Consider a distribution over matchings in a graph. A matching in a graph G = (V,E) is a subsets of edges
such that no two edges share a vertex. Here we focus on the special case of a complete bipartite graph G
with vertices v1, . . . , vN on the left and u1, . . . , uN on the right, as shown:
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In such a graph, a perfect matching is a matching which includes N edges. We are interested in sampling
from a distribution over perfect matchings. We can denote a perfect matching using the variables σ =
[σij ] ∈ {0, 1}N×N , where σij = 1 is vi and uj are matched and σij = 0 otherwise. Observe that σ is a perfect
matching if and only if

N∑
k=1

σik = 1 for all 1 ≤ i ≤ N

N∑
k=1

σkj = 1 for all 1 ≤ j ≤ N

A perfect matching σ can also be thought of as a permutation σ : {1, . . . , N} → {1, . . . , N}. For example, if
σ12 = σ21 = σ33 = 1, this would correspond to the permutation σ(1) = 2, σ(2) = 1, and σ(3) = 3.

Consider the distribution defined by a set of weights on the edges wij ≥ 0 for all i and j such that

µ(σ) ∝ exp
{∑

i,j

wijσij

}
I(σ is a perfect matching)

= exp
{∑

i

wiσ(i)

}
I(σ is a perfect matching) .

(a) First, in this part, consider the uniform distribution over perfect matchings, i.e., wij = 0 for all i, j.
Describe a simple procedure to sample σ from this uniform distribution.

(b) Now for the weighted distribution, show that for any perfect matching σ,

µ(σ) ≥ 1

N ! exp(Nw∗)
,

where w∗ = maxi,j wij .

1



(c) Consider the Metropolis-Hastings rule defined by: choose i, i′ ∈ {1, . . . , N} uniformly at random. If
i = i′, do nothing, otherwise with probability

R = min
{

1 , exp(wiσ(i′) + wi′σ(i) − wiσ(i) − wi′σ(i′))
}

swap σ(i) and σ(i′), i.e. define a new permutation σ′ such that σ′(j) = σ(j) for j 6= i, i′ and σ′(i) = σ(i′)
and σ′(i′) = σ(i).

Show that, under this Markov chain, for any valid transition σ → σ′,

Pσ,σ′ = P( next state is σ′ | currect state is σ )

≥ 1

N2 exp(2w∗)
.

(d) For the conductance of this Markov chain, argue using (b) and (c) that

Φ = min
S

∑
σ∈S,σ′∈Sc µ(σ)Pσ,σ′

µ(S)µ(Sc)

≥ 1

N !N2 exp((N + 2)w∗)
,

where S is a set states (or matchings), Sc is the complement of S, and µ(S) =
∑
σ∈S µ(σ).

(e) Using (d), obtain a bound on the mixing time of the Markov chain.

Problem 4.2 (Sampling) In this problem, we develop an efficient algorithm for sampling from a two-
dimensional Ising model building on the naive Gibbs sampling. In particular, suppose all variables xij take
values in {+1,−1}. Using the graph structure G shown below, define the distribution

µθ(x) =
1

Zθ
exp

{ ∑
(ij,kl)∈E

θxijxkl
}
.
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(a) Derive the update rules for a node-by-node Gibbs sampler for this model. Implement the sampler in
Matlab and run it for 3,600,000 iterations on an Ising model of size 60 × 60 with coupling parameter
θ = 0.45. Use uniformly random initialization of xij = +1 with probability 0.5 and xij = −1 otherwise.
Show one instance of the state of the variables after every 360,000 iterations. For a 60× 60 matrix x ∈
{−1,+1}60×60, you can use MATLAB commands imagesc(x);colormap gray;axis off; to display
the state x.

(b) Suppose we are given a tree-structured undirected graphical model T with variables y = (y1, . . . , yN ).
Give an efficient procedure for sampling from the joint µ(y).

(c) In block Gibbs sampling, we partition a graph into r subsets A1, . . . , Ar. In each iteration, for each Ai,
we sample xAi

from the conditional distribution µ(xAi
|xV \Ai

). For the Ising model G described above,
consider the two comb-shaped subsets A and B shown below. Describe how to use your sampler from
part (b) to perform the block Gibbs updates. (For this part, you may assume a black-box implementation
of your sampling procedure from part (b).) .

(d) We provide an implementation of the block Gibbs sampler from part (c) in comb gibbs step.m, comb sum product.m,

ising gibbs comb.m. As in part (a), we set θ = 0.45 and run the sampler for 1000 iterations updating
A and then B at every iteration. Run the block Gibbs sampler in ising gibbs comb.m and analyze the
state of the variables after every 100 iterations. Which of the two samplers appears to mix faster?
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