IE 598 Inference in Graphical Models

Homework 4

Problem 4.1 [Optional] (Sampling) In this problem, we use the Cheeger’s inequality from class to
upper bound the mixing time of a Markov chain by lower bounding the conductance of the Markov chain.
Consider a distribution over matchings in a graph. A matching in a graph G = (V, E) is a subsets of edges
such that no two edges share a vertex. Here we focus on the special case of a complete bipartite graph G
with vertices vy, ...,vy on the left and uy,...,uy on the right, as shown:

In such a graph, a perfect matching is a matching which includes N edges. We are interested in sampling
from a distribution over perfect matchings. We can denote a perfect matching using the variables o =
[0:;] € {0,1}V*N where 0;; = 1 is v; and u; are matched and o;; = 0 otherwise. Observe that o is a perfect
matching if and only if
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A perfect matching o can also be thought of as a permutation o : {1,..., N} — {1,..., N}. For example, if
012 = 091 = 033 = 1, this would correspond to the permutation o(1) = 2,0(2) = 1, and ¢(3) = 3.
Consider the distribution defined by a set of weights on the edges w;; > 0 for all ¢ and j such that

u(o) o< exp { Z W0 }I[(U is a perfect matching)
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= exp { Z ww(i)}ﬂ(a is a perfect matching) .
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(a) First, in this part, consider the uniform distribution over perfect matchings, i.e., w;; = 0 for all 4, j.
Describe a simple procedure to sample ¢ from this uniform distribution.

(b) Now for the weighted distribution, show that for any perfect matching o,
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where w* = max; ; w;;.



(c) Consider the Metropolis-Hastings rule defined by: choose ¢,i" € {1,..., N} uniformly at random. If
i = 1/, do nothing, otherwise with probability

R = min { 1, eXp(ww(i/) + Wirg (i) = Wig(i) — wi,g(i,)) }
swap o (i) and o(i'), i.e. define a new permutation ¢’ such that o'(j) = o(j) for j # i,i’ and o/ (i) = o (i)
and o’(i') = o ().
Show that, under this Markov chain, for any valid transition o — o”,
Py, = P( next state is o’ | currect state is o )
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(d) For the conductance of this Markov chain, argue using (b) and (c¢) that
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where S is a set states (or matchings), S¢ is the complement of S, and u(S) = 3" g pu(o).

(e) Using (d), obtain a bound on the mixing time of the Markov chain.

Problem 4.2 (Sampling) In this problem, we develop an efficient algorithm for sampling from a two-
dimensional Ising model building on the naive Gibbs sampling. In particular, suppose all variables x;; take
values in {41, —1}. Using the graph structure G shown below, define the distribution
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wo(x) = Z—exp{ Z Hxij:rkl}.
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(a) Derive the update rules for a node-by-node Gibbs sampler for this model. Implement the sampler in
Matlab and run it for 3,600,000 iterations on an Ising model of size 60 x 60 with coupling parameter
6 = 0.45. Use uniformly random initialization of x;; = 4+1 with probability 0.5 and z;; = —1 otherwise.
Show one instance of the state of the variables after every 360,000 iterations. For a 60 x 60 matrix x €
{—1,+1}59%69 " you can use MATLAB commands imagesc(x);colormap gray;axis off; to display
the state z.

(b) Suppose we are given a tree-structured undirected graphical model T' with variables y = (y1,...,Yyn)-
Give an efficient procedure for sampling from the joint u(y).

(¢) In block Gibbs sampling, we partition a graph into r subsets Aj,..., A,. In each iteration, for each A;,
we sample 24, from the conditional distribution pu(z 4, |z 4,). For the Ising model G described above,
consider the two comb-shaped subsets A and B shown below. Describe how to use your sampler from
part (b) to perform the block Gibbs updates. (For this part, you may assume a black-box implementation
of your sampling procedure from part (b).) .
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(d) We provide an implementation of the block Gibbs sampler from part (¢) in comb_gibbs_step.m, comb_sum _product.m,
ising gibbs_comb.m. As in part (a), we set 8 = 0.45 and run the sampler for 1000 iterations updating
A and then B at every iteration. Run the block Gibbs sampler in ising_gibbs_comb.m and analyze the
state of the variables after every 100 iterations. Which of the two samplers appears to mix faster?



