
IE 598 Inference in Graphical Models

Homework 5

Covers lecture slides from

6. Density evolution

8. Variational Inference

Problem 5.1 [Variational approach] In this problem, we are going to compute free energies of simple
graphical models and use BP-like fixed point equations to find the stationary points. We shall consider
G` = (V`, E`), an ` × ` two-dimensional torus. This has vertex set V` = [`] × [`] and, for any two vertices
i, j ∈ V`, i = (i1, i2), j = (j1, j2), i1, i2, j1, j2 ∈ [`], we let (i, j) ∈ E` if and only if either i1 = j1 and
(i2 − j2) ∈ {+1,−1} modulo `, or i2 = j2 and (i1 − j1) ∈ {+1,−1} modulo `.

We consider the homogeneous Ising model over x ∈ {+1,−1}V`

µ(x) =
1

ZG
exp

{
ε̃
∑

(i,j)∈E`

xixj + θv
∑
i∈V`

xi

}
,

where ε̃, θv are parameters.
[It is rare to encounter such a symmetric model in applications. On the other hand, such toy examples are
very useful for developing intuition.]

In the following, fix ` = 10, θv = 0.05.

(a) Consider the naive mean field approximation, and write the naive mean field free energy for

FMF(b) = Eb[logψtot(x)]−
∑
i

∑
xi

bi(xi) log bi(xi) ,

where b = b1(·)× · · · × bn(·) and ψtot(x) =
∏
i∈V ψi(xi)

∏
(i,j)∈E ψij(xi, xj).

Assume then the further restriction bi(xi) = bv(xi) for all i ∈ V` (i.e. the belief is independent of the
vertex). Write an expression FMF(bv) as a function of bv. Plot the free energy FMF(bv) as a function of
a = (bv(+1)− bv(−1)) for ε̃ ∈ {0.2, 0.4, 0.6, 0.8, 1.0}.
Maximize FMF(bv) with respect to bv and plot the optimal value b∗v(+1) and FMF(b∗v) as a function of ε̃.

(b) Repeat the same exercise for the Bethe free energy : Write explicitly the Bethe free energy

F(b) =
∑

(i,j)∈E

Ebij [logψij(xi, xj)] +
∑
i∈V

Ebi [logψi(xi)]

−
∑

(i,j)∈E

∑
xi,xj

bij(xi, xj) log bij(xi, xj)− (1− deg(i))
∑
i∈V

∑
xi

bi(xi) log bi(xi) .

Assume the further restriction bi(xi) = bv(xi) for all i ∈ V`, bij(xi, xj) = be(xi, xj) (i.e. the belief is
independent of the vertex). Write an expression F(bv, be) as a function of bv, be.

Now, consider ε̃ = 1.0, and we want to show that F(bv, be) has more than one stationary point. The
objective function is F(bv, be), and the constraint is that

∑
xi
be(xi, xj) = bv(xj) and

∑
xj
be(xi, xj) =

bv(xi). The Lagrangian can be written as

L(bv, be, λ1, λ2) = F(bv, be) +
∑
xi

λ1(xi)(
∑
xi

be(xi, xj)− bv(xj)) +
∑
xj

λ2(xj)(
∑
xj

be(xi, xj)− bv(xi)) .
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The derivative gives

∂L

∂bv(xi)
=

∂F(bv, be)

∂bv(xi)
− λ1(xi)− λ2(xi) + C

∂L

∂be(xi, xj)
=

∂F(bv, be)

∂bv(xi)
+ λ1(xi) + λ2(xj) + C ′ ,

where C and C ′ are constants (that may differ for each xi, xj) that we ignore because we do not care
about normalization at this point. Write the explicit derivative of the Lagrangian in terms of l, θv,
θe, bv(xi), be(xi, xj), and Lagrangian multipliers λ1(xi) and λ2(xj) which correspond to the constraints∑
xj
be(xi, xj) = bv(xi) and

∑
xi
be(xi, xj) = bv(xj).

By symmetry, λ1 and λ2 are the same. So we define λ(xi) = (1/2l2)λ1(xi) = (1/2l2)λ2(xi). Show that
bv(xi) and be(xi, xj) at the stationary point satisfy the below equations, by setting the above derivative
to zero.

bv(xi) ∝ e−(1/3)θvxie(4/3)λ(xi)

be(xi, xj) ∝ eθexixje(λ(xi)+λ(xj)) ,

By the condition that
∑
xi
be(xi, xj) = bv(xj), this gives

eθexi+λ(+) + e−θexi+λ(−) ∝ e−(1/3)θvxi+(1/3)λ(xi) ,

for xi ∈ {+1,−1}. substituting xi = +1 in the above equation, then dividing by the same function
evaluated at xi = −1, we get

eθe+λ(+) + e−θe+λ(−)

e−θe+λ(+) + e+θe+λ(−)
= e−(2/3)θv+(1/3)(λ(+)−λ(−)) ,

Let ` = (1/2)(λ(+)− λ(−)) and change variables to get

eθe+` + e−θe−`

e−θe+` + e+θe−`
= e−(2/3)θv+(2/3)` ,

Using the equality that atanh(tanh(a) tanh(b)) = (1/2) log
(
ea+b+e−a−b

ea−b+e−a+b

)
, show that

tanh(θe) tanh(`) = tanh
(1

3
(`− θv)

)
. (1)

Plot the left-hand side and the right-hand side of the above equations to finish the proof that there are
multiple stationary points of Bethe free energy when θv = 0.05 and θe = 1.0.

(c) We want to maximize F(p1, p2) for each value of θe ∈ {0.2, 0.4, 0.6, 0.8, 1.0}. Using the above fixed point
equations in (1), find all the fixed points of ` (numerically and/or approximately). For each fixed point
`, find the corresponding value of bv(·), be(·), and F(bv, be). Plot the optimal (i.e., maximum) value
p1 = b∗v(+1) and the free energy F(p∗1, p

∗
2) as a function of ε̃.

Problem 5.2 [Crowdsourcing] From the lecture, we studied a message passing algorithm (developed
as a belief propagation for Haldane prior):

• initialize: y
(0)
j→i’s as independent and identically distributed Gaussian random variable with mean one

and variance one (this is one choice of initialization and any reasonable choice works as well)
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• update messages:

x
(τ+1)
i→j =

∑
k∈∂i\j

y
(τ)
j→iAik

y
(τ+1)
j→i =

∑
k∈∂j\i

x
(τ+1)
k→j Akj

• after enough number (e.g. T ) of iterations estimate each task label by

t̂i = sign
( ∑
k∈∂i

y
(T )
k→iAik

)
We will implement this algorithm for the following setting:

• the number of tasks n = 100

• the number of workers m = 100

• the (average) degree of a task node is `

• the (average) degree of a worker node is also `

• generate random graph as follows: for each task-worker pair (i, j), connect the two nodes with an edge
with probability `/m and otherwise do not connect with an edge: for example you can use the following
Matlab script to generate such a graph with adjacency matrix E

E = zeros(n,m);

E = ceil( rand(n,m)-1+(l/m) );

• generate random n task labels i.i.d, such that ti = +1 with probability 1/2 and −1 with probability
1/2

t = sign( rand(n,1)-0.5 );

• generate random m worker reliabilities i.i.d., such that pj is drawn from the uniform distribution over
the interval [a, b] for some 0 < a < b < 1

p = a+(b-a)*rand(m,1);

We will fix a = 0.3 and b = 0.95. For each value of ` ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10}, we will generate 100 instances
of {random graph, task labels, worker reliabilities}, and for each instance of the problem, generate the
responses of the workers on those tasks assigned to the workers according to the Dawid-Skene model, i.e.

Aij =

{
ti with probability pj
−ti with probability 1− pj

for all (i, j) ∈ E.
For each instance of the problem, use the proposed algorithm to find the estimates {t̂i}i∈n, and compute

the error probability:

Pe(`) =
1

n

n∑
i=1

I(ti 6= t̂i)

We will compare it to majority voting error rate:

PMV(`) =
1

n

n∑
i=1

I
(
ti 6= sign

(∑
j∈∂i

Aij
))
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For each value of ` plot the Pe(`) and PMV(`) averaged over the 100 random instances of the problem, as a
function of ` ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10}.

Problem 5.3 In this problem, we explore the connections between minimum cut of a graph and
pairwise Markov random fields in binary alphabets. Consider a graphical model defined on an undirected
graph G(V,E),

µ(x) =
1

Z
exp{−

∑
i∈V

φi(xi)−
∑

(i,j)∈E

φij(xi, xj)} ,

for x = [x1, . . . , xn] ∈ {0, 1}n. We further assume for now that φij(0, 0) = φij(1, 1) = 0 for all (i, j) ∈ E
(meaning they are zero-diagonal when we consider the functions as 2× 2 matrices) such that

φi(·) =

[
φi(0)
φi(1)

]
, and φij(·, ·) =

[
0 φij(0, 1)

φij(1, 0) 0

]
.

Our goal is to find the maximum likelihood estimate, the one that maximizes the above joint distribution.
In order to find the maximizer, we pose this question as a problem of finding the minimum cut of a graph.

Given a pairwise MRF on G(V,E) and the compatibility functions φij(·, ·)’s, we first create a new di-
rected and weighted graph as follows.

• Add one node for the source s and one node for the sink t.

• Add an edge from source s to all nodes in V (red edges in the figure below).

• Add an edge from all nodes in V to the sink t (blue edges in the figure below).

• make all edges in E reciprocal (by taking the undirected edge E and making them in to two edges in
opposite directions; black edges in the figure below).

An example of a 2 × 2 grid G, that is transformed is shown below. The colors do not have particular
meanings, it is there to help you understand the creation of the new graph. We will find the minimum cut
in this transformed graph, after putting appropriate non-negative weights on the edges. A cut in a graph
is partition of the nodes into two disjoint sets, one containing the source and the other containing the sink.
The value of a cut is the total weight of the edges that start from a node in the same partition as the
source and end in a node in the sink side of the partition, i.e. those that go from the source side of the
partition to the other. Note that in the minimum cut, for each node in V , EITHER the edge connecting
to the sink will be cut, OR the edge connecting from the source will be cut, but NOT BOTH (since the
source and the sink are constrained to be on different sides of the cut). Once we find the minimum cut in
this graph, we will assign ZERO to the sink side of the cut and ONE to the source side. This defines a
one-to-one mapping between an assignment of binary values in the MRF and a cut in the transformed graph
H(V ∪ {s, t}, D).

Our goal is to minimize E(x) ,
∑
i∈V φi(xi) +

∑
(i,j)∈E φij(xi, xj) (which is equivalent as finding the

most likely assignment). The following costs on the edges (also called capacities in max-flow min-cut context)
ensures that the min-cut of the transformed graph H corresponds to the minimizer of E(x).

• Assign φi(0) to the edge from the source (s, i).

• Assign φi(1) to the edge to the sink (i, t).

• Assign φ(1, 0) to the edge (i, j) and φij(0, 1) to the edge (j, i).

An example below shows that this assignment ensures that the value of the cut corresponds to the energy E(x)
of the corresponding assignment. In general, cut values are equal to the energy E(x) pf the corresponding
assignment x.
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s

t

x1

x4

x2

x3

x1

x4

x2

x3

s

t

x1

x4

x2

x3

cut s

t

x1

x4

x2

x3

cut s

t

x1

x4

x2

x3

cut

φ1(0)

φ4(1)

φ14(1, 0)
φ14(0, 1)

assignment: x = [0, 0, 0, 0]
cut value: φ1(0) + φ2(0) + φ3(0) + φ4(0)

x = [1, 0, 0, 0]
φ1(1) + φ14(1, 0) + φ12(1, 0)
+φ2(0) + φ3(0) + φ4(0)

x = [1, 0, 0, 1]
φ1(1) + φ12(1, 0)
+φ2(0) + φ3(0) + φ4(1) + φ34(01)

It is known that when the cost on the edges are non-negative, the minimum cut can be found efficiently.
Hence, when all φij(0, 0) = φij(1, 1) = 0 and φi(xi)’s, φij(0, 1)’s and φij(1, 0)’s are all non-negative, then
the costs on the edges are all non-negative and the minimizer of E(x) can be found efficiently by running
the off-the-shelf min-cut solvers on H.

(a) Suppose φ1(0) < 0, and the rest of the compatibility functions are all non-negative, and φij(0, 0) =
φij(1, 1) = 0 for all (i, j) ∈ E. Find a new φ′1(x1) such that

• φ′1(0) and φ′1(1) are non-negative; and

• the minimizer of E′(x) = φ′1(x1) +
∑
i∈V \{1} φi(xi) +

∑
(i,j)∈E φij(xi, xj) is the minimizer of E(x).

Then, the corresponding transformed graph H with the new costs from φ′1(x1) can be solved for min-cut,
since all costs are non-negative.

(b) Now, consider a general case when φij(0, 0)’s and φij(1, 1)’s are not necessarily zero. Explain how to
assign costs to the directed edges of H (not just for the example given above, but for general H(V ∪
{s, t}, D) defined from general G(V,E)), such that the value of a cut in this new H is equal to the
energy E(x) =

∑
i∈V φi(xi) +

∑
(i,j)∈E φij(xi, xj) for the corresponding assignment x. Note that

we do not worry about computational complexity of finding the minimum-cut in this part, and focus in
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posing the problem as a min-cut problem.
[hint: consider changing φi(xi)’s and φij(xi, xj)’s in order to get new φ′ij(xi, xj)’s such that the diagonals
are zero.]

(c) Suppose φi(xi)’s are all non-negative and φij(xi, xj)’s are also all non-negative. Assigning costs to the
edges of H as per the solution of part (b), it is possible that some edges are assigned negative costs.
This is problematic, since min-cut cannot be efficiently solved. However, when all pairwise compatibility
functions are sub-modular, then the minimizer of E(x) can be found efficiently. We will prove that this
is possible, by constructing a new graph H with non-negative costs under sub-modularity assumption.

A function f(·) over two binary variables is said to be sub-modular if and only if

f(0, 0) + f(1, 1) ≤ f(0, 1) + f(1, 0) .

Suppose φi(xi)’s are non-negative and φij(xi, xj)’s are non-negative and sub-modular. Explain how to
assign costs to the directed edges of H (not just for the example given above, but for general H(V ∪
{s, t}, D) defined from general G(V,E)), such that

• the value of a cut in this new H is equal to the energy E(x) =
∑
i∈V φi(xi) +

∑
(i,j)∈E φij(xi, xj)

for the corresponding assignment x; and

• all costs are non-negative.

[hint: consider changing φi(xi)’s and φij(xi, xj)’s in order to get new φ′ij(xi, xj)’s such that the diagonals
are zero and the off-diagonals are non-negative.]
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