Mid-term Quiz

Fall 2012

This quiz is an hour and 30 minutes long. There are 2 problems with 5 sub-problems in total.

Problem 1

Consider a stochastic process that transitions among a finite set of states s_{1}, \ldots, s_{k} over time steps $i=1, \ldots, N$. The random variables X_{1}, \ldots, X_{N} representing the state of the system at each time step are generated as follows:

- Sample the initial state $X_{1}=s$ from an initial distribution p_{1}, and set $i:=1$.
- Repeat the following:
- Sample a duration d from a duration distribution p_{D} over the integers $\{1, \ldots, M\}$, where M is the maximum duration.
- Remain in the current state s for the next d time steps, i.e., set

$$
X_{i}:=X_{i+1}:=\ldots:=X_{i+d-1}:=s
$$

- Sample a successor state s^{\prime} from a transition distribution $p_{T}(\cdot \mid s)$ over the other states $s^{\prime} \neq s$ (so there are no sef-transitions).
- Assign $i:=i+d$ and $s:=s^{\prime}$.

This process continues indefinitely, but we only observe the first N time steps. You need not worry about the end of the sequence to do any of the problems. As an example calculation with this model, the probability of the sample state sequence $s_{1}, s_{1}, s_{1}, s_{2}, s_{3}, s_{3}$ is

$$
p_{1}\left(s_{1}\right) p_{D}(3) p_{T}\left(s_{2} \mid s_{1}\right) p_{D}(1) p_{T}\left(s_{3} \mid s_{2}\right) \sum_{2 \geq d \leq M} p_{D}(d)
$$

Finally, we do not directly observe the X_{i} 's, but instead observe emissions y_{i} at each step sampled from a distribution $p_{Y_{i} \mid X_{i}}\left(y_{i} \mid x_{i}\right)$.
(a) For this part only, suppose $M=2$, and $p_{D}(d)=\left\{\begin{array}{ll}0.6 & \text { for } d=1 \\ 0.4 & \text { for } d=2\end{array}\right.$, and each X_{i} takes on a value from an alphabet $\{a, b\}$. Draw a minimal directed I-map for the first five time steps using the variables $\left(X_{1}, \ldots, X_{5}, Y_{1}, \ldots, Y_{5}\right)$. Explain why none of the edges can be removed.
[Note: you do not need to solve part (a) in order to solve part (b) and (c).]
(b) This process can be converted to an HMM using an augmented state representation. In particular, the states of this HMM will correspond to pairs (x, t), where x is a state in the original system, and t represents the time elapsed in that state. For instance, the state sequence $s_{1}, s_{1}, s_{1}, s_{2}, s_{3}, s_{3}$ would be represented as $\left(s_{1}, 1\right),\left(s_{1}, 2\right),\left(s_{1}, 3\right),\left(s_{2}, 1\right),\left(s_{3}, 1\right),\left(s_{3}, 2\right)$. the transition and emission distribution for the HMM take the forms

$$
\tilde{p}_{X_{i+1}, T_{i+1} \mid X_{i}, T_{i}}\left(x_{i+1}, t_{i+1} \mid x_{i}, t_{i}\right)= \begin{cases}\phi\left(x_{i}, x_{i+1}, t_{i}\right) & \text { if } t_{i+1}=1 \text { and } x_{i+1} \neq x_{i} \\ \xi\left(x_{i}, t_{i}\right) & \text { if } t_{i+1}=t_{i}+1 \text { and } x_{i+1}=x_{i} \\ 0 & \text { otherwise }\end{cases}
$$

and $\tilde{p}_{Y_{i} \mid X_{i}, T_{i}}\left(y_{i} \mid x_{i}, t_{i}\right)$, respectively. Express $\phi\left(x_{i}, x_{i+1}, t_{i}\right), \xi\left(x_{i}, t_{i}\right)$, and $\tilde{p}_{Y_{i} \mid X_{i}, T_{i}}\left(y_{i} \mid x_{i}, t_{i}\right)$ in terms of parameters $p_{1}, p_{D}, p_{T}, p_{Y_{i} \mid X_{i}}, k, N$, and M of the original model.
(c) We wish to compute the marginal probability for the final state X_{N} given the observations Y_{1}, \ldots, Y_{N}. If we naively apply the sum-product algorithm to the construction in part (b), the computational complexity is $O\left(N k^{2} M^{2}\right)$. Show that by exploiting additional structure in the model, it is possible to reduce the complexity to $O\left(N\left(k^{2}+k M\right)\right)$. In particular, give the corresponding rules for computing the forward messages $\nu_{i+1 \rightarrow i+2}\left(x_{i+1}, t_{i+1}\right)$ from the previous message $\nu_{i \rightarrow i+1}\left(x_{i}, t_{i}\right)$. Do not worry about the beginning or the end of the sequence and restrict your attention to $2 \leq i \leq N-1$.
[Hint: substitute your solution from part (b) into the standard update rule for HMM messages and simplify as much as possible.]
[Note: If you cannot fully solve this part of the problem, you can receive substantial partial credit by constructing an algorithm with complexity $O\left(N k^{2} M\right)$.]

Problem 2

Consider random variables $X_{1}, X_{2}, Y_{1}, \ldots, Y_{N}, Z_{1}, \ldots, Z_{N}$ distributed according to

$$
p_{X_{1}, X_{2}, Y, Z}\left(x_{1}, x_{2}, y, z\right)=p_{X_{1}}\left(x_{1}\right) p_{X_{2}}\left(x_{2}\right) \prod_{i=1}^{N}\left[p_{Y \mid X_{1}}\left(y_{i} \mid x_{1}\right) p_{Z \mid Y, X_{2}}\left(z_{i} \mid y_{i}, x_{2}\right)\right]
$$

where $X_{1}, Y_{1}, \ldots, Y_{N}, Z_{1}, \ldots, Z_{N}$ take on values in $\{1,2, \ldots, K\}$ and X_{2} instead takes on a value in $\{1,2, \ldots, N\}$. A minimal directed I-map for the distribution is as follows:

Assume throughout this problem that the complexity of table lookups for $p_{X_{1}}, p_{X_{2}}, p_{Y \mid X_{1}}$, and $p_{Z \mid Y, X_{2}}$ are $O(1)$.
(a) A Bayesian network represented by a directed acyclic graph can be turned into a Markov random field by moralization. The moralized counterpart of a directed acyclic graph is formed by connecting all pairs of nodes that have a common child, and then making all edges in the graph undirected. Draw the moral graph over random variables $X_{1}, X_{2}, Y_{1}, \ldots, Y_{N}$ conditioned on Z_{1}, \ldots, Z_{N}. In other words, find an undirected I-map for the distribution of random variables $X_{1}, X_{2}, Y_{1}, \ldots, Y_{N}$ conditioned on Z_{1}, \ldots, Z_{N}.
Provide a good elimination ordering for computing marginals of $X_{1}, X_{2}, Y_{1}, \ldots, Y_{N}$ conditioned on Z_{1}, \ldots, Z_{N}. For your elimination ordering, determine α and β such that complexity of computing $p_{X_{1} \mid Z_{1}, \ldots, Z_{N}}$ using the associated elimination algorithm is $O\left(N^{\alpha} K^{\beta}\right)$.
(b) For the remainder of this problem, suppose that we also have the following context-dependent conditional independencies: Y_{i} is conditionally independent of Z_{i} given $X_{2}=c$ for all $i \neq c$. For fixed $z_{1}, \ldots, z_{N}, x_{1}$, and c, show that

$$
p_{Z_{1}, \ldots, Z_{N} \mid X_{1}, X_{2}}\left(z_{1} \ldots, z_{N} \mid x_{1}, c\right)=\eta\left(x_{1}, c, z_{c}\right) \lambda\left(c, z_{1}, \ldots, z_{c-1}, z_{c+1}, \ldots, z_{N}\right)
$$

for some function $\eta\left(x_{1}, c, z_{c}\right)$ that can be evaluated in $O(K)$ operations for fixed $\left(x_{1}, c, z_{c}\right)$, and some function $\lambda\left(c, z_{1}, \ldots, z_{N}\right)$ that can be evaluated in $O(N)$ operations for fixed $\left(c, z_{1}, \ldots, z_{N}\right)$. Express $\eta\left(x_{1}, c, z_{c}\right)$ in terms of $p_{Y \mid X_{1}}$ and $p_{Z \mid Y, X_{2}}$, and $\lambda\left(c, z_{1}, \ldots, z_{c-1}, z_{c+1}, \ldots, z_{N}\right)$ in terms of $p_{Z \mid X_{2}}$.

Optional problem

The graph G is a perfect undirected map for some strictly positive distribution $\mu(x)$ over a set of random variables $x=\left(x_{1}, \ldots, x_{n}\right)$, each of which takes values in a discrete set \mathcal{X}. Choose some variable x_{i} and let x_{A} denote the rest of the variables in the model, i.e., $\left\{x_{i}, x_{A}\right\}=\left\{x_{1}, \ldots, x_{N}\right\}$. Construct the graph G^{\prime} from G by removing the node x_{i} and all its edges. Let some value $c \in \mathcal{X}$ be given. Show that G^{\prime} is not necessarily a perfect map for the conditional distribution $\mathbb{P}_{x_{A} \mid x_{i}}(\cdot \mid c)$ by giving a counterexample.

