
IE 598 Inference in Graphical Models

Mid-term Quiz
Spring 2015

This is a 24-hour take-home exam. you are allowed to use any of the course materials (homework,
homework solutions, lecture notes, textbooks), but you are not allowed to consult anyone or search for hints
on the web. Any questions should be directed to swoh@illinois.edu. I will be mostly responsive within
an hour, except from 1:00AM till 7:00AM. There are 4 problems, check if you have all 4 when you receive
this exam.

1

Problem 1. As mentioned in class, Gaussian BP allows to compute the minimum of a quadratic function

x̂ = arg min
x∈Rn

{1

2
〈x,Qx〉+ 〈b, x〉

}
. (1)

for Q ∈ Rn×n positive definite, where 〈a, b〉 = aT b indicates the standard inner product of two vectors. In
this homework we will consider a case in which Q is not positive definite, but is symmetric and has full rank.
in this case we can still define

x̂ = −Q−1b . (2)

which is a stationary point (a saddle point) of the above quadratic function. The BP update equations
are exactly the same as for the minimization problem with a positive definite Q. We claim that, when BP
converges, it still computes the correct solution x̂.

We consider a specific model. An unknown signal s0 ∈ Rn is observed in Gaussian noise

y = As0 + w0 . (3)

Here y ∈ Rm is a vector of observations, A ∈ Rm×n is a measurement matrix, and w0 ∈ Rm is a vector of
Gaussian noise, with i.i.d. entries w0,i ∼ N (0, σ2). We are given y and A, and would like to reconstruct the
unknown vector s0, and hence w0.

A popular method consists in solving the following quadratic programming problem (known as ridge
regression):

ŝ = arg min
s∈Rn

{1

2

∥∥y −As∥∥2
2

+
1

2
λ‖s‖22

}
. (4)

We will do something equivalent. For x ∈ Rm+n, x = (z, s), z ∈ Rm, s ∈ Rn, we define a cost function

CA,y(x = (z, s)) = −1

2
‖z‖22 +

1

2
λ‖s‖22 + 〈z, y −As〉 . (5)

We will look for the stationary point of CA,y.

(a) Show that the cost function CA,y(x) can be written in the form

CA,y(x) =
1

2
〈x,Qx〉+ 〈b, x〉 . (6)

Write explicitly the form of the matrix Q ∈ R(m+n)×(m+n) and the vector b ∈ Rm+n.

(b) Let x̂ = (ẑ, ŝ) be the stationary point of CA,y(z, s). Assuming it is unique, show that ŝ does coincide
with the ridge estimator (4).

(c) Write the update rule for the BP algorithm (equivalent to the sum-product algorithm) to compute the
stationary point x̂ = (ẑ, ŝ) of CA,y(x). [hint: use the same ideas from the Gaussian belief propagation
for positive definite Q.]

(d) Prove the above claim that, if BP converges, then it computes x̂, cf. Eq. (2) even if Q is not positive
definite.

2

Problem 2. Consider a stochastic process that transitions among a finite set of states s1, . . . , sk over
time steps i = 1, . . . , N . The random variables X1, . . . , XN representing the state of the system at each time
step are generated as follows:

• Sample the initial state X1 = s from an initial distribution p1, and set i := 1.

• Repeat the following:

– Sample a duration d from a duration distribution pD over the integers {1, . . . ,M}, where M is
the maximum duration.

– Remain in the current state s for the next d time steps, i.e., set

Xi := Xi+1 := . . . := Xi+d−1 := s

– Sample a successor state s′ from a transition distribution pT (·|s) over the other states s′ 6= s (so
there are no sef-transitions).

– Assign i := i+ d and s := s′.

This process continues indefinitely, but we only observe the first N time steps. You need not worry
about the end of the sequence to do any of the problems. As an example calculation with this model, the
probability of the sample state sequence s1, s1, s1, s2, s3, s3 is

p1(s1)pD(3)pT (s2|s1)pD(1)pT (s3|s2)
∑

2≤d≤M

pD(d) .

Finally, we do not directly observe the Xi’s, but instead observe emissions yi at each step sampled from a
distribution pYi|Xi

(yi|xi).

(a) For this part only, suppose M = 2, and pD(d) =

{
0.6 for d = 1
0.4 for d = 2

, and each Xi takes on a value

from an alphabet {a, b}. Draw a minimal directed I-map for the first five time steps using the variables
(X1, . . . , X5, Y1, . . . , Y5). Explain why none of the edges can be removed.
[Note: you do not need to solve part (a) in order to solve part (b) and (c).]

(b) This process can be converted to an HMM using an augmented state representation. In particular, the
states of this HMM will correspond to pairs (x, t), where x is a state in the original system, and t
represents the time elapsed in that state. For instance, the state sequence s1, s1, s1, s2, s3, s3 would be
represented as (s1, 1), (s1, 2), (s1, 3), (s2, 1), (s3, 1), (s3, 2). the transition and emission distribution for
the HMM take the forms

p̃Xi+1,Ti+1|Xi,Ti
(xi+1, ti+1|xi, ti) =

 φ(xi, xi+1, ti) if ti+1 = 1 and xi+1 6= xi
ξ(xi, ti) if ti+1 = ti + 1 and xi+1 = xi
0 otherwise

and p̃Yi|Xi,Ti
(yi|xi, ti), respectively. Express φ(xi, xi+1, ti), ξ(xi, ti), and p̃Yi|Xi,Ti

(yi|xi, ti) in terms of
parameters p1, pD, pT , pYi|Xi

, k, N , and M of the original model.

(c) We wish to compute the marginal probability for the final state XN given the observations Y1, . . . , YN .
If we naively apply the sum-product algorithm to the construction in part (b), the computational
complexity is O(Nk2M2). Show that by exploiting additional structure in the model, it is possible to
reduce the complexity to O(N(k2+kM)). In particular, give the corresponding rules for computing the
forward messages νi+1→i+2(xi+1, ti+1) from the previous message νi→i+1(xi, ti). Do not worry about
the beginning or the end of the sequence and restrict your attention to 2 ≤ i ≤ N − 1.
[Hint: substitute your solution from part (b) into the standard update rule for HMM messages and
simplify as much as possible.]
[Note: If you cannot fully solve this part of the problem, you can receive substantial partial credit by
constructing an algorithm with complexity O(Nk2M).]

3

Problem 3. In this problem we consider using Low-Density Parity Check (LDPC) codes to encode bits
to be sent over a noisy channel.

Encoding. LDPC codes are defined by a factor graph model over a bipartite graph G(V, F,E), where
V is the set of variable nodes, each representing the bit to be transmitted, and F is a set of factor nodes
describing the code and E is a west of edges between a bit-node and a factor node. The total number of
variable nodes in the graph define the length of the code (also known as the block length), which we denote
by n , |V |.

We consider binary variables xi ∈ {−1,+1} for i ∈ V , and all codewords that are transmitted satisfy∏
i∈∂a

xi = +1 ,

which means that there are even number of −1’s in the neighborhood of any factor node.
Channel. We consider a Binary Symmetric Channel, known as BSC(ε), where one bit is transmitted over

the channel at each discrete time step, and each transmitted bit is independently flipped with probability ε.
Precisely, let xi ∈ {+1,−1} be a transmitted bit and yi ∈ {+1,−1} be the received bit (at time i), then

P(yi = +1|xi = +1) = 1− ε ,
P(yi = −1|xi = +1) = ε ,

P(yi = −1|xi = −1) = 1− ε ,
P(yi = +1|xi = −1) = ε .

The conditional probability distribution over xn1 = [x1, . . . , xn] given the observed received bits yn1 =
[y1, . . . , yn] is

µ(xn1 | yn1) =
1

Z

∏
i∈V

ψi(xi, yi)
∏
a∈F

I(⊗x∂a = +1) ,

where ψi(xi, yi) = P(yi|xi) and ⊗ indicates product of binary numbers such that if x∂a = {x1, x2, x3} then
⊗x∂a = x1 × x2 × x3 (to be precise we need to take ψi(xi|yi) = P(xi|yi), but this gives the exactly same
conditional distribution as above since any normalization with respect to yi’s are absorbed in the partition
function Z). This is naturally a graphical model on a factor graph G(V, F,E) defined by the LDPC code.

(a) Write down the belief propagation updates (also known as the (parallel) sum-product algorithm) for

this factor graph model for the messages {ν(t)i→a(·)}(i,a)∈E and {ν̃(t)a→i(·)}(i,a)∈E .

(b) What is the computational complexity (how many operations are required in terms of the degrees of
the variable and factor nodes) for updating one message νi→a(·) and one message ν̃a→i(·) respectively?

Explain how one can improve the computational complexity, to compute the message ν̃
(t)
a→i(·) exactly

in runtime O(da), where da is the degree of the factor node a.

(c) Now, we consider a different message passing algorithm introduced by Robert Gallager in 1963. The
following update rule is a message passing algorithm known as the Gallager A algorithm. Similar to
the belief propagation for BEC channels we studied in class, this algorithm also sends discrete messages

(as opposed to real-valued messages in part (a)). Both ν
(t)
i→a’s and ν̃

(t)
a→i’s are binary, i.e. in {+1,−1}.

ν
(t+1)
i→a =


+1 if ν̃

(t)
b→i = +1 for all b ∈ ∂i \ a ,

−1 if ν̃
(t)
b→i = −1 for all b ∈ ∂i \ a ,

yi otherwise ,

ν̃
(t)
a→i =

∏
j∈∂a\i

ν
(t)
j→a .

4

The interpretation of this update rule is that νi→a messages trust the received bit yi unless all of the
incoming messages disagree with yi, and ν̃a→i messages make sure that the consistency with respect
to I(⊗x∂a) is satisfied. In this algorithm, the messages take values in {+1,−1} and are the estimated
values of xi’s, as opposed to the distribution over those values as in belief propagation.

We assume that random (`, r)-regular bipartite graph is used to generate the LDPC code. In the
resulting random graph, all variable nodes have degree ` and all factor nodes have degree r. Among
all such graphs, a random graph is selected uniformly at random.

Define W (t) to be the (empirical) distribution of the messages {ν(t)i→a}(i,a)∈E and Z(t) to be the (empir-

ical) distribution of the messages {ν̃(t)a→i}(i,a)∈E . We assume the messages are initialized in such way

that ν
(0)
i→a = yi for all i ∈ V . We also assume, without loss of generality, that all +1 messages were

sent, i.e. xi = +1 for all i. Then, let w(t) = P(W (t) = −1) be the probability that a message ν
(t)
i→a is

−1 for a randomly chosen edge (i, a), and let z(t) = P(Z(t) = −1) be the probability that a message

ν̃
(t)
a→i is −1 for a randomly chosen edge (i, a).

Write the density evolution equations for w(t) and z(t), describing how the random distribution of
the messages w(t) and z(t) evolve. [We are looking for a clean answer. Specifically, the number of
operations required to compute z(t) from w(t) should be O(1). The same technique that reduced
computation in part (b) should be helpful.]

(d) Write the density evolution equation for a single scalar variable w(t), by substituting z(t). This gives
a fixed point equation in the form of w(t) = F (w(t−1)) for some F . Plot (using MATLAB to your
favorite numerical analysis tool) the function y = F (x) and the identify function y = x, for ` = 3 and
r = 4, and for two values of ε = 0.05 and ε = 0.1 Explain the figure in terms of the error probability
of the (3,4)-code on those two BSC(ε)’s.

5

Problem 4 In this problem, we explore the connections between minimum cut of a graph and pairwise
Markov random fields in binary alphabets. Consider a graphical model defined on an undirected graph
G(V,E),

µ(x) =
1

Z
exp{−

∑
i∈V

φi(xi)−
∑

(i,j)∈E

φij(xi, xj)} ,

for x = [x1, . . . , xn] ∈ {0, 1}n. We further assume for now that φij(0, 0) = φij(1, 1) = 0 for all (i, j) ∈ E
(meaning they are zero-diagonal when we consider the functions as 2× 2 matrices) such that

φi(·) =

[
φi(0)
φi(1)

]
, and φij(·, ·) =

[
0 φij(0, 1)

φij(1, 0) 0

]
.

Our goal is to find the maximum likelihood estimate, the one that maximizes the above joint distribution.
In order to find the maximizer, we pose this question as a problem of finding the minimum cut of a graph.

Given a pairwise MRF on G(V,E) and the compatibility functions φij(·, ·)’s, we first create a new di-
rected and weighted graph as follows.

• Add one node for the source s and one node for the sink t.

• Add an edge from source s to all nodes in V (red edges in the figure below).

• Add an edge from all nodes in V to the sink t (blue edges in the figure below).

• make all edges in E reciprocal (by taking the undirected edge E and making them in to two edges in
opposite directions; black edges in the figure below).

An example of a 2 × 2 grid G, that is transformed is shown below. The colors do not have particular
meanings, it is there to help you understand the creation of the new graph. We will find the minimum cut
in this transformed graph, after putting appropriate non-negative weights on the edges. A cut in a graph
is partition of the nodes into two disjoint sets, one containing the source and the other containing the sink.
The value of a cut is the total weight of the edges that start from a node in the same partition as the
source and end in a node in the sink side of the partition, i.e. those that go from the source side of the
partition to the other. Note that in the minimum cut, for each node in V , EITHER the edge connecting
to the sink will be cut, OR the edge connecting from the source will be cut, but NOT BOTH (since the
source and the sink are constrained to be on different sides of the cut). Once we find the minimum cut in
this graph, we will assign ZERO to the sink side of the cut and ONE to the source side. This defines a
one-to-one mapping between an assignment of binary values in the MRF and a cut in the transformed graph
H(V ∪ {s, t}, D).

s

t

x1

x4

x2

x3

x1

x4

x2

x3

6

Our goal is to minimize E(x) ,
∑

i∈V φi(x)i) +
∑

(i,j)∈E φij(xi, xj) (which is equivalent as finding the

most likely assignment). The following costs on the edges (also called capacities in max-flow min-cut context)
ensures that the min-cut of the transformed graph H corresponds to the minimizer of E(x).

• Assign φi(0) to the edge from the source (s, i).

• Assign φi(1) to the edge to the sink (i, t).

• Assign φ(1, 0) to the edge (i, j) and φij(0, 1) to the edge (j, i).

An example below shows that this assignment ensures that the value of the cut corresponds to the energy E(x)
of the corresponding assignment. In general, cut values are equal to the energy E(x) pf the corresponding
assignment x.

s

t

x1

x4

x2

x3

cut s

t

x1

x4

x2

x3

cut s

t

x1

x4

x2

x3

cut

φ1(0)

φ4(1)

φ14(1, 0)
φ14(0, 1)

assignment: x = [0, 0, 0, 0]
cut value: φ1(0) + φ2(0) + φ3(0) + φ4(0)

x = [1, 0, 0, 0]
φ1(1) + φ14(1, 0) + φ12(1, 0)
+φ2(0) + φ3(0) + φ4(0)

x = [1, 0, 0, 1]
φ1(1) + φ12(1, 0)
+φ2(0) + φ3(0) + φ4(1) + φ34(01)

It is known that when the cost on the edges are non-negative, the minimum cut can be found efficiently.
Hence, when all φij(0, 0) = φij(1, 1) = 0 and φi(xi)’s, φij(0, 1)’s and φij(1, 0)’s are all non-negative, then
the costs on the edges are all non-negative and the minimizer of E(x) can be found efficiently by running
the off-the-shelf min-cut solvers on H.

(a) Suppose φ1(0) < 0, and the rest of the compatibility functions are all non-negative, and φij(0, 0) =
φij(1, 1) = 0 for all (i, j) ∈ E. Find a new φ′1(x1) such that

• φ′1(0) and φ′1(1) are non-negative; and

• the minimizer of E′(x) = φ′1(x1) +
∑

i∈V \{1} φi(xi) +
∑

(i,j)∈E φij(xi, xj) is the minimizer of E(x).

Then, the corresponding transformed graph H with the new costs from φ′1(x1) can be solved for min-cut,
since all costs are non-negative.

(b) Now, consider a general case when φij(0, 0)’s and φij(1, 1)’s are not necessarily zero. Explain how to
assign costs to the directed edges of H (not just for the example given above, but for general H(V ∪
{s, t}, D) defined from general G(V,E)), such that the value of a cut in this new H is equal to the
energy E(x) =

∑
i∈V φi(xi) +

∑
(i,j)∈E φij(xi, xj) for the corresponding assignment x. Note that

we do not worry about computational complexity of finding the minimum-cut in this part, and focus in
posing the problem as a min-cut problem.

7

[hint: consider changing φi(xi)’s and φij(xi, xj)’s in order to get new φ′ij(xi, xj)’s such that the diagonals
are zero.]

(c) Suppose φi(xi)’s are all non-negative and φij(xi, xj)’s are also all non-negative. Assigning costs to the
edges of H as per the solution of part (b), it is possible that some edges are assigned negative costs.
This is problematic, since min-cut cannot be efficiently solved. However, when all pairwise compatibility
functions are sub-modular, then the minimizer of E(x) can be found efficiently. We will prove that this
is possible, by constructing a new graph H with non-negative costs under sub-modularity assumption.

A function f(·) over two binary variables is said to be sub-modular if and only if

f(0, 0) + f(1, 1) ≤ f(0, 1) + f(1, 0) .

Suppose φi(xi)’s are non-negative and φij(xi, xj)’s are non-negative and sub-modular. Explain how to
assign costs to the directed edges of H (not just for the example given above, but for general H(V ∪
{s, t}, D) defined from general G(V,E)), such that

• the value of a cut in this new H is equal to the energy E(x) =
∑

i∈V φi(xi) +
∑

(i,j)∈E φij(xi, xj)
for the corresponding assignment x; and

• all costs are non-negative.

[hint: consider changing φi(xi)’s and φij(xi, xj)’s in order to get new φ′ij(xi, xj)’s such that the diagonals
are zero and the off-diagonals are non-negative.]

8

