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Cake cutting
model

a cake is the interval [0; 1]
a peice of cake is X � [0; 1]
each of n agents has valuation Vi over X such that

F normalized: Vi ([0; 1]) = 1
F additive: Vi (X [Y ) = Vi (X ) + Vi (Y ) for all X \Y = ;
F divisible: for all � 2 [0; 1], exists a piece X 0 � X such that

Vi (X 0) = �Vi (X )

problem: find a partition A = fA1; : : : ; Ang that is fair
notion of fairness

proportionality: for all i 2 [n ]

Vi (Ai ) � 1
n

envy-freeness(EF): for all i ; j 2 [n ]

Vi (Ai ) � Vi (Aj )

in general EF implies proportionality but not the other way (EF is
equivalent as proportionality when n = 2)
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protocol satisfying envy-freeness for n = 2

cut-and-choose algorithm for n = 2
1. agent 1 divides the cake into two equally evaluated pieces such that

V1(X ) = V1(X c) = 1=2
2. agent 2 chooses the preferred piece

claim. cut-and-choose algorithm is EF, and hence proportional

Robertson-Webb model for complexity
two types of queries are allowed

F Eval(i ; x ; y) = Vi ([x ; y ])
F Cut(i ; x ; �) = y such that Vi ([x ; y ]) = �

e.g. cut-and-choose algorithm requires 2 queries
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two protocols satisfying proportionality for general n � 3

Dubins-Spanier protocol
F for i = 1 : n
F remaining agents mark 1=n point from the left of the remaining cake
F the leftmost agent gets the piece up to his marks
F the agent who got the piece is removed and the piece is also removed
F end for.

claim. DS protocol satisfies proportionality

complexity: DS protocol requires O(n2) queries
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Even-Paz protocol
F given [x1; x2] = [0; 1]
F if n > 1
F each agent marks zi such that Vi ([x1; zi ]) =

1
2Vi ([x1; x2])

F let x � be the n=2-th mark from the left
F else if n = 1
F the agent gets the piece [x1; x2]
F repeat with left n=2 agents on [x1; x �] and right agents on [x �; x2]

claim. EP protocol satisfies proportionality

complexity: DS protocol requires O(n log n) queries

theorem.[Edmonds,Pruhs ’06] Any proportional protocol requires
Ω(n log n) queries
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protocol satisfying envy-freeness for n = 3
Selfridge-Conway protocol for three agents fA; B ; Cg

I stage 0 (divide the cake into two parts)
F A divides the cake into three equal pieces according to VA
F B trims the largest piece according to VB such that the two largest

pieces have the same value for B
F let the trimmed part be Cake 2 and the reamining part be Cake 1

I stage 1 (allocate the cake 1)
F Cake 1 is already divided into three pieces X1, X2, X3 such that

1=3 = VA(X1) = VA(X2) � VA(X3) (we let X3 be the trimmed piece)
F we also know that VB (X1) � VB (X2) = VB (X3) (we let X1 be the

piece that is smallest for B)
F C chooses the most preferred piece among X1;X2;X3
F B chooses the most preferred piece among the rest (but when there is

a tie, he chooses X3)
F A gets the remaining piece

I stage 2 (allocate the cake 2)
F let T 2 fB ;Cg be the agent who got the trimmed piece X3
F let T 0 2 fB ;Cg be the agent who did not get the trimmed piece X3
F agent T chooses the most preferred piece among the three
F A chooses the most preferred piece among the rest
F agent T 0 gets the remaining piece
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claim. SC protocol satisfies envy-freeness
proof.

in stage 1 for the division of cake 1
F C is envy-free since he chooses first
F B is envy-free since he always gets either X2 or X3 that have the same

value for him
F A is envy-free since he always gets either X1 or X2 that have the same

value for him
in stage 2 after the division of cake 2

F T is envy-free since he chooses first (and he was envy free in stage 1)
F A is envy-free of T 0 because he chooses before T 0

F A is envy-free of T , since VA(X1) = VA(X2) = 1=3 is the value of his
piece from stage 1, and it is at least the value of what T got in stage 1
and the whole cake 2, i.e. VA(X3) + VA(cake 2) = 1=3

F T 0 is envy free since all the pieces have the same value for him (and he
was envy free in stage 1)

in general for n � 4, the best known protocol might require
unbounded number of queries [Brams, Taylor, 1995]
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The price of fairness
let Social Welfare of a allocation A be

nX

i=1

Vi (Ai )

the Price of envy-freeness is the worst-case ratio between the social
welfare of the best allocation and the best EF allocation

max
fV1;:::;Vng

max
A

nX

i=1

Vi (Ai )

max
B satisfying EF

nX

i=1

Vi (Bi )

theorem. [Caragiannis et al. ’09] the price of envy-freeness is Ω(
p

n)
proof.

F agents B = f1; : : : ;png desire disjoint intervals of length 1=
p

n
uniformly

F the rest B c desire the whole cake uniformly
F social welfare maximized by giving the cake to B s.t.

P
i Vi (Ai ) =

p
n

F EF allocation must give at least n�pn
n fraction of cake to B c , resultingP

i Vi (Ai ) � n�pn
n +

p
n
p

n
n � 2
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suppose we allocate the cake to n agents and for each we must
allocate connected pieces

the dumping paradox: throwing away a part of the cake can increase
the social wellfare of the best EF allocation by a factor of

p
n [Azri et

al. 2011]

example with two agents where the social welfare increases from 1 to
arbitrarily close to 1.5

I agent 1 desires the whole cake uniformly
I agent 2 desires the middle � interval [ 1��

2 ; 1+�

2 ] of the cake uniformly
I only one EF and connected cut at 1=2, which achieves socail welfare of

1
I if we throw away the piece [0; �], and allocate the piece [�; 1+�

2 ] to
agent 2 and [ 1+�

2 ; 1] to agent 1, then this is EF and connected
I further, this allocation achieves social welfare of 1:5� �
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Approximate envy-freeness
since there is no known EF protocol with finite complexity, efficient
approximate protocols have been proposed such that

Vi (Ai ) � Vi (Aj )� " ;

for all i ; j 2 [n ]

suppose there are m indivisible goods, and we partition these goods
into n subsets A = fA1; : : : ;Ang to be allocated to n agents with
value function Vi (� � � )’s, and let

eij (A) = maxf0;Vi (Aj )�Vi (Ai )g
e(A) = max

i ;j2[n ]
eij (A)

and define the maximum marginal utility as

� � max
i ;Ai ;x

fVi (Ai [ fxg)�Vi (Ai )g

in the case of additive value functions (as in the cake cutting setting),
the maximum marginal utility simplifies to � = maxi ;x Vi (x )
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theorem. [Lipton et al. 2004] given m indivisible goods and n agents
with value functions Vi ’s, there is a polynomial time algorithm for
finding an allocation satisfying

e(A) � �

I we can use the above theorem (and the algorithm that will be
explained in the proof of the theorem in the following) to find an
"-approximate EF allocation in polynomial time

F each agent i makes d 1
"
e marks x (i)

1 ; : : : ; x (i)
d1="e such that each interval is

" valuable, i.e. Vi ([x
(i)
k ; x (i)

k+1]) = " for i = 1; : : : ; d 1
"
e � 1

F given nd1="e marks, one can treat each of the 1 + (nd1="e) intervals
as indivisible goods such that the maximum marginal utility is bounded
by � � "

F applying the above theorem with m = 1 + (nd1="e) goods, we get an
"-EF protocol with polynomial running time
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Proof of the Lipton’s theorem.
given an allocation A, consider an envy graph GA(V ;E) s.t. we have
a directed edge (i ; j ) if i envies j , i.e. eij = maxf0;Vi (Aj )�Vi (Ai )g

lemma. For any envy graph GA with allocation A which might not
inlude all the goods, there exists an allocation B of all the goods that
are included in A with envy graph GB such that GB is has no cycles
and the approximation gap does not increase such that e(B) � e(A)

using the above lemma, we can iteratively allocate the goods while
maintaining the weight of the edges at most �

1. Initialize A as allocating all agents emptysets

A(0) = fA(0)
1 = ;; : : : ;A(0)

n = ;g
2. For k = 1; : : : ;m
- allocate the k -th good gk to (one of) the souce node of the graph

GA, where a source is a node that has no incoming edge and call this
allocation B (k)

- find a new allocation A(k) of the first k goods by eliminating the
cycle using the above lemma

3. end for.
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this algorithm maintains e(A(k)) � �, since
(a) e(A(0) = 0 ;
(b) e(B (k)) � e(A(k�1)) ; and
(c) e(A(k)) � e(B (k)) ;

where (c) follows from the lemma and
(b) follows from the fact that when we add a good to a source node i ,
the resulting graph can only add edges that end at node i since node
i ’s allocation only increased and all the other nodes allocations stay the
same
further, since i is the source in the original graph, there is no incoming
edge, hence

ej i(B (k)) � eji (A(k�1)) + � = �

and this finishes the proof of the theorem
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proof of the lemma.
key insight: if there is a cycle in GA, then shift the allocations along
the cycle to obtain a new allocation A0 such that e(A) � e(A0)

F for example, a cycle of two agents i and j implies Vi (Ai ) � Vi (Aj )
and Vj (Aj ) � Vj (Ai )

F then by giving Aj to agent i and Ai to j , everyone is better off, in the
sense that both i and j are allocated a better piece than before and all
the other agents stay the same, hence

e(A0) � e(A)

and when we remove a cycle, the number of edges only decrease
we can iteratively remove cycles until all cycles are gone

when valuations are additive (as is the case for cake cutting problem),
there is an alternative and simpler way to assign goods while
maintaining envy � "

F create indiviiisible goods in the same way
F agents choose most preferred pieces in a round-robin fashion:

1; 2; : : : ;n ; 1; : : : ;n ; : : :
F each good chosen by agent i at k -th round is preferred to the good

chosen by agent j in k + 1-th round
F hence, envy is at most the value of a good chosen in the first round,
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