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Linear Programming

Overview
I We consider the following Linear Programming (LP) problem

minimize cTx
subject to Ax = b

x � 0

x is the variable we optimize over, and c, b, A are given constant
vectors and matrices

I Objective function: F (x ) = cTx
I Constraints: Ax = b and x � 0
I A feasible solution is a vector x that satisfy all the constraints
I An optimal solution is a feasible solution that minimizes the objective

function
I A feasible solution might not exist
I A solution to LP can be unbounded, i.e. for any a there exists a

feasible x such that cx � a
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Linear Programming
Transformations

I LP is a family of optimization problems with linear objective function
and affine constraints (equality and inequality)

I There are elementary transformations that allow us to rewrite any LP
to an equivalent one

I Maximization vs. minimization
F maximize cTx is equiv. to minimize �cTx

I Equality to inequality constraints
F Ax = b is equiv. to Ax � b and �Ax � �b.
F number of constraints doubled

I Inequality to equality constraints
F Ax � b is equiv. to Ax + s = b and s � 0 (introducing slack variables)
F number of variables increase by the number of constraints

I Unrestricted variables to non-negative variables
F xi = x+

i � x�i
F x+

i � 0 and x�i � 0
F number of variables doubled
F one solution in the original problem corresponds to infinite number of

solutions
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Linear Programming

Example

maximize cTx
subject to Ax � b

is equivalent to

minimize c0Tx 0

subject to A0x 0 = b0

x 0 � 0

for x 0 =

264x+

x�

s

375, A0 =

264 A
�A
I

375, b0 = b and c0 =

264�c
c
0

375
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Linear Programming

Geometric interpretation of LP
Consider Ax � b

I the feasible set can be empty, bounded, or unbounded
I feasible set is always convex

F A set is convex if and only if for any two points in the set x and y ,
�x + (1� �)y is also in the set for any � 2 [0; 1]

F if Ax � b and Ay � b, then
A(�x + (1� �)y) = �Ax + (1� �)Ay � �b + (1� �)b � b

Consider Ax = b
I the feasible set is a convex set on a lower dimensional space
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Linear Programming

Primal LP

maximize cTx
subject to Ax � b

x � 0

Dual LP

minimize bTy
subject to ATy � c

y � 0

Each variable yi corresponds to a constraint Ai �x � bi

Each constraint AT
�i y � ci corresponds to variable xi

Linear Programming 6-6



Linear Programming
Weak duality theorem

I Given feasible x and y we can derive

cTx � (ATy)Tx � yTAx � yTb = bTy

Hence, cTx � bTy
I If we can compute a feasible solution x for the primal LP, this gives a

lower bound on the Dual LP
Strong dual theorem

I For the optimal solutions x � and y�,

cTx � = bTy�

For any feasible x and y ,

cTx � cTx � = bTy� � bTy

and this is useful when approximating the optimal solution
This assumes both primal and dual LP are feasible with finite solution
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Linear Programming
Geometric view of LP duality

I two dimensional x = (x1; x2)

maximize c1x1 + c2x2

subject to A11x1 + A12x2 � b1

...
Am1x1 + Am2x2 � bm

x1 � 0
x2 � 0

A2

A1

A4

A3
c

x*

I the constraints A3 and A4 are active at the optimal solution x �
I Intuitively, at the optimal point the forces from c, A3 and A4 should

achieve an equilibrium such that they sum to zero.

c � y�3A3 � y�4A4 = 0

I Define y� to be this vector with all zeros except for y�3 and y�4 that
satisfy the above equation with y�3 � 0 and y�4 � 0
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Linear Programming

Geometric view of LP duality
I Then, we claim that this y� defined this way is (i) a feasible solution

of the dual problem; and (ii) the optimal solution of the dual problem
I Feasibility: From the above equation we have ATy� = c. Also, y� � 0

by definition.
I Optimality:

cTx � = (ATy�)x �

= (y�)TAx �

= y�3A3x � + y4A4x �

= y�3b3 + y4b4

= bTy�

From weak duality we know that for any feasible y , bTy � cTx �. We
just showed that cTx � = bTy�. This proves that y� minimizes bTy
among all feasible solutions.
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Linear Programming

Perturbation and sensitivity analysis
(unperturbed) LP and its dual (with optimal solution x �(0) and y�(0))

maximize cTx
subject to Ax � b

x � 0

minimize bTy
subject to ATy � c

y � 0
perturbed LP and its dual (with optimal solution x �(∆) and y�(∆))

maximize cTx
subject to Ax � b + ∆

x � 0

minimize bTy + ∆Ty
subject to ATy � c

y � 0
From weak duality, cTx �(∆) � bTy�(0) + ∆Ty�(0)

If y�
i (0) is large, changing i -th constraint changes the optimal value

greatly (the LP is sensitive to the i -th constraint)
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Linear Programming

local sensitivity
I if x �(∆) is differentiable at 0, then

y�i (0) =
@
�
cTx �(∆)

	
@∆i

���
∆=0

I proof. From previous slide,

@
�
cTx �(∆)

	
@∆i

���
∆=0

= lim
t&0

cTx �(tei ) � cTx �(0)

t
� y�i (0)

@
�
cTx �(∆)

	
@∆i

���
∆=0

= lim
t%0

cTx �(tei ) � cTx �(0)

t
� y�i (0)
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Exercise: LP duality and LP relaxation

Primal LP

maximize cTx
subject to Ax � b

x � 0

Dual LP

minimize bTy
subject to ATy � c

y � 0

Exercise

maximize 0:1x + 0:3y + 0:4z
subject to x + y + z � 1

x + y � 0:3z � 1
x + 0:5y + z � 0:8
x � y � 1:3
x ; y ; z � 0

What is the dual LP?
Is it feasible?
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Complementary slackness
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LP Duality

for some problems, the strong duality theorem for LP gives fresh
insights into the primal problem

F Max-flow Min-cut
F Shortest paths
F Zero-sum games

for some problems that can be formulated as integer program (IP), we
can solve the LP relaxations and still find the optimal solutions of IP

F Maximum spanning trees
F Maximum bipartite matching

for some problems that can be formulated as integer program (IP), LP
relaxations give approximation algorithm with precise approximation
guarantees

F Minimum vertex cover

Linear Programming 6-14



Max-flow and min-cut
A weighted directed graph G = (V ;E ;C ) with source s and sink t
There are two ways to formulate this problem

I variable for each edge: fij
I variable for each path p from s to t : f (p)

first one has smaller number of variables, but second one is more
intuitive
for each path p 2 P (P is the set of all paths from s to t)

maximize
X
p2P

f (p)

subject to
X

p:(i;j )2p

f (p) � Cij ; 8(i ; j ) 2 E

f (p) � 0; 8p

consider a jPj � jE j matrix A = [Ap;(i ;j )] such that Ap;(i ;j ) = 1 if
(i ; j ) 2 p
then, the constraint is AT f � C
let `ij ’s be the dual variable for each edge
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Exercise: LP duality and LP relaxation

Primal LP

max
X
p2P

fp

s. t.
X

p:(i;j )2p

fp � Cij ; 8(i ; j ) 2 E

fp � 0; 8p

variable vector: fp 2 RjPj

objective: cT f with
c = [1; : : : ; 1] 2 RjPj

constraints: Af � b with
A 2 RjPj�jE j

Ae ;p =

(
1 if e 2 p
0 otherwise

be = Cij 2 RjE j for e = (i ; j )

What is the dual LP?
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Max-flow and min-cut
Dual LP:

minimize
X

(i;j )2E

`ijCij

subject to
X

(i;j )2p

`ij � 1; 8p 2 P

`ij � 0; 8(i ; j ) 2 E

Interpretation
I consider `ij as (virtual) length of the edge (i ; j )
I Cij as the volume per unit length of the edge (i ; j )
I minimize the total volume of the pipes
I while ensuring that for all paths, the length of that path is at least one

One way to construct a feasible dual `ij is to use graph cuts
I Consider any cut (S ;S c) with s 2 S and t 2 S c

I Let `ij be one if it crosses the cut and zero otherwise
I This is feasible: any path goes through one of the edges across the cut

at least once
I the value of the cut is

P
(i ;j )2E `ijCij
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weak duality theorem impliesX
p2P

f (p) �
X

(i ;j )2E

`ijCij

I Consider any any `ij ’s derived from a cut (S ;S c)
I Consider any flow f (p)’s
I the weak duality implies that the value of a cut is larger than or equal

to value of a flow (we already know this, but this is an alternative way
for proving it)
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proving max-flow min-cut theorem using strong duality theorem

we can prove a much stronger result (which we already proved using
Ford-Fulkerson algorithm in previous lectures) of max-flow min-cut
theorem using LP duality, stating that there exists a cut whose value is
equal to the maximum flow

theorem. for all feasible solution ` of the dual LP of max-flow
problem, there exists a cut (S ;S c) such that if we let

`�ij =

�
1 if i 2 S ; j 2 S c

0 otherwise

then c(S ;S c) =
P

(i ;j )2E `�ijCij �
P

(i ;j )2E `ijCij

corollary. [max-flow min-cut theorem] there exists a cut (S ;S c) such
that the value of the cut is equal to the value of the maximum flow
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proof of the corollary. from strong duality, we know that there is a
dual feasible solution such thatX

p2P

fp =
X

(i ;j )2E

`�ijCij

from the adobe theorem, we know that there exists a cut with value at
most

P
(i ;j )2E `�ijCij and this proves the max-flow min-cut theorem

(notice that the cut value cannot be smaller due to weak duality
theorem)

proof of the theorem. for each node i , let di be the shortest path
distance from s to i according to the lengths defined by `ij ’s, then it
follows that dt � 1
for a � 2 [0; 1), let

S� = fi 2 V jdi � �g

then (S�;S c
�

) is a cut in G
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now suppose we choose � uniformly at random from [0; 1). If we can
show that

E[c(S�;S c
�

)] �
X

(i ;j )2E

`ijCij

then it proves that there exists at least one cut (S�;S c
�

) such that

c(S�;S c
�

) �
X

(i ;j )2E

`ijCij

to prove the bound on the expectation, note that

E[c(S�;S c
�

)] =
X

(i ;j )2E

CijP
�
(i ; j ) 2 c(S�;S c

�
)
�

since P
�
(i ; j ) 2 c(S�;S c

�
)
�

= P(� 2 [di ; dj )) = dj � di and
dj � di + `ij , we have

P
�
(i ; j ) 2 c(S�;S c

�
)
�
� `ij
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putting the inequalities together we get that there exists a cut
corresponding to a value �� such that

c(S�� ;S c
��

) � E�[c(S�;S c
�

)]

=
X

(i ;j )2E

CijP
�
(i ; j ) 2 c(S�;S c

�
)
�

�
X

(i ;j )2E

Cij `ij

this finishes the proof of the theorem

complementary slackness

if `ij > 0 then
P

p:(i;j )2p fp = Cij (if an edge is in the minimum cut in
the dual, then the edge is saturated in the primal)

if fp > 0 then
P

(i;j )2p `ij = 1 (all paths carrying non-zero flow much
be one of many shortest paths and pass through a min-cut once)
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Shortest Paths
Pair-wise Shortest Paths Problem:

I Given an undirected weighted graph G = (V ;E ;w)
I Find the shortest path from node s to node t

Consider solving the shortest paths problem using the following
physical device

I The physical device has nodes V connected by strings of length wij
connecting node i and node j

I To find the shortest path from s to t , one only needs to pull s away
from t until one can no longer pull them away

I Intuitively, this finds the shortest path from s to t

Question: why are we pulling (maximization) when we want to
minimize the distance?
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LP formulation as a min-cost flow problem with infinite capacity

minimize
X

(i;j )2E

fijwij

subject to fij � 0; 8(i ; j ) 2 EX
k :(ki)2E

fki �
X

k :(ik)2E

fik =

(
0 8i 6= s ; t
1 if i = t
�1 if i = s

I feasible set: set of all flows of value one
I LP: bring 1 unit flow from s to t with minimum cost
I equivalent to finding a single path from s to t with minimum distance
I Claim. there always exists a single path with min-cost flow
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Transformation for writing the dual

minimize
X

(i;j )2E

fijwij

subject to fij � 0; 8(i ; j ) 2 EX
k :(ki)2E

fki �
X

k :(ik)2E

fik = 0; 8i =2 fs ; tg

X
k :(kt)2E

fkt �
X

k :(tk)2E

ftk = 1

X
k :(ks)2E

fks �
X

k :(sk)2E

fsk = �1

I Rewriting equality constraints as inequalitiesX
k :(ki)2E

fki �
X

k :(ik)2E

fik � 0

X
k :(ki)2E

fki �
X

k :(ik)2E

fik � 0

each corresponding to dual variables x�i and x+
i
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Primal LP

maximize cT f

subject to Af � b

f � 0

I cij = �wij

I A =

� eA
�eA

�
, with eAk ;(i ;j ) =

�
1 if k = j

�1 if k = i

I b =

�
b̃
�b̃

�
, with b̃i =

8<:
0 8i 6= s ; t
1 if i = t

�1 if i = s
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Dual LP
minimize �(x+

t � x�t ) + (x+
s � x�s )

subject to x+
i ; x

�
i � 0; 8i

�(x+
i � x�i ) + (x+

j � x�j ) � �wij ; 8(i ; j ) 2 E

Can be rewritten as (transformation)
maximize xt � xs

subject to xi � xj � wij ; 8(i ; j ) 2 E

Intuitively, this is stretching s and t as far apart as possible, subject to
each endpoint of any edge (i ; j ) are separated by at most wij
This is expected from the intuition from the physical device with
strings

Linear Programming 6-27



More generally, we have proven (and used) the following LP duality

I Primal LP

minimize cTx
subject to Ax = b

x � 0

I Dual LP

maximize bTy
subject to ATy � c
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Zero-sum game

I A zero-sum game is represented by a payoff matrix M
I Example: rock-paper-scissors

r p s
r 0 -1 1
p 1 0 -1
s -1 1 0

Table : Payoff matrix for Player A

I if player A uses a fixed strategy, then player B can countermove
I so we consider mixed strategies: player A chooses action i with

probability xi , player B chooses action j with probability yj
I the expected payoff to player A (row player) isX

i ;j

Mij xiyj

I Player A wants to maximize it, player B wants to minimize it
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an optimal strategy for rock-paper-scissors: uniformly random
consider A’s strategy x = [1=3; 1=3; 1=3]
fact 1. the expected payoff is 0 regardless of B ’s strategy

claim. This is optimal strategy for A, in the sense that there exists a
strategy for B (that does not depend on A’s strategy) where A cannot
get an expected payoff larger than 0.

proof. Consider the best scenario for A, where B chooses a mixed
strategy and then A choose her mixed strategy knowing B ’s strategy.
Clearly, this can only be better than when A chooses her strategy
without knowing B ’s. We claim that even in this best case scenario, A
cannot do better than 0.
Let B play uniform strategy [1=3; 1=3; 1=3], then B can also achieve 0
regardless of A’s actions.

claim. this optimal strategy is unique in the sense that for any other
strategy of A, there exists a strategy for B (that depends on the
strategy of A) such that the payoff is strictly negative

proof. let [x1; x2; x3] be A’s strategy and [x3; x2; x1] be B ’s strategy.
Then the payoff is �x 2

1 � x 2
2 � x 2

3 + x1x2 + x2x3 + x1x3 =
� 1

2

�
(x1 � x2)

2 + (x2 � x3)
2 + (x1 � x3)

2
	
. This is strictly negative

unless x1 = x2 = x3 = 1=3.
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question: for general zero-sum games, if A can choose her strategy
after B , can she do better than if B can choose her action after A?
the one choosing strategy after has obvious advantage
however, we will see that if both players play optimally, there is no gain
in choosing strategy after the other player

I Non-symmetric Example:
a b

c 3 -1
d -2 1

I Once player A’s strategy is fixed x = [x1; x2], there is always a pure
strategy that is optimal for B

F B chooses action a if and only if a gives A smaller payoff
F payoff to A when action a : (3x1 � 2x2)
F payoff to A when action b: (�x1 + x2)

payoff(x1; x2) = min f3x1 � 2x2;�x1 + x2g

hence, A can predict B’s optimal strategy and choose x accordingly to

max
x1;x2

min f3x1 � 2x2;�x1 + x2g

the maximum is achieved when 3x1 � 2x2 = �x1 + x2 ( and
x1 + x2 = 1 ), which gives x �1 = 3=7 and x �2 = 4=7; the optimal
expected payoff for A is 1=7Linear Programming 6-31



I In general, we can formulate maxx1;x2 minf3x1 � 2x2;�x1 + x2g as an
LP

maximize x1;x2;z z
subject to z � 3x1 � 2x2

z � �x1 + x2

x1 + x2 = 1
x1; x2 >= 0

F since we are maximizing z , z is always saturating at least one of the
constraints such that z = minf3x1 � 2x2;�x1 + x2g

F hence, we are effectively maximizing minf3x1 � 2x2;�x1 + x2g
F we can do this for any zero-sum games with any number of actions (as

long as it is finite)
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I Optimal strategy for A

maximize z

subject to z � 3x1 � 2x2

z � �x1 + x2

x1 + x2 = 1

x1; x2 � 0

I Optimal strategy for B

minimize w

subject to w � 3y1 � y2

w � �2y1 + y2

y1 + y2 = 1

y1; y2 � 0
I Notice two LP’s are dual

F x =

264 x1

x2

z +

z�

375, c = [0; 0; 1;�1], A =

264�3 2 1 �1
1 �1 1 �1
1 1 0 0
�1 �1 0 0

375, b =

264 0
0
1
�1

375
I By strong duality, they have the same optimal value
I This proves that for general zero-sum games with finite action space,

there exists optimal mixed strategies for both players and they achieve
the same value (a fundamental result in game theory known as
min-max theorem)

max
x

min
y(x )

X
i ;j

Mij xiyj = min
y

max
x (y)

X
i ;j

Mij xiyj
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Maximum weight perfect matching in bipartite graphs

consider an undirected weighted bipartite graph G = (U ;V ;E) with
jU j = jV j and non-negative weights wij ’s on the edges

a perfect matching is a matching that includes all the nodes in the
graph

max-weight bipartite perfect matching problem can be formulated as
the following integer programming:

maximize
X

(i ;j )2E

wij xij

subject to
X

j :(i ;j )2E

xij = 1 ; for all i 2 U

X
i :(i ;j )2E

xij = 1 ; for all j 2 V

xij 2 f0; 1g ; for all (i ; j ) 2 E
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the LP relaxation is

maximize
X

(i ;j )2E

wij xij

subject to
X

j :(i ;j )2E

xij = 1 ; for all i 2 U

X
i :(i ;j )2E

xij = 1 ; for all j 2 V

xij � 0 ; for all (i ; j ) 2 E

fact 1. we do not need upper bounds on xij ’s

theorem. this LP always has an integer optimal solution

corollary. there is no loss in LP relaxation: we can (efficiently) solve
the LP relaxation to get the optimal solution of the original IP
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proof of the theorem. we will prove this by showing that, if the LP
relaxation has a non-integral optimal solution, then we can always find
an integral solution with the same value of wTx =

P
wij xij .

Suppose there is an optimal, feasible and non-integral solution x̃ .
Then, there exists an edge (i ; j ) with non-integral solution xij 6= 0 and
xij 6= 1. Then by the equality constraint on node i , node i is
connected to another edge with non-integral solution. Similarly, j is
connected to another edge with non-integral solution. Similarly, we can
continue extending this line of non-integral solution edges until they
form a cycle C with even number of edges, since the graph is bipartite.

Let � = minfmin(i ;j )2C (xij );min(i ;j )2C (1� xij )g, such that it is the
minimum distance of the solution of the edges in the cycle to its
closest integral solution. Let x+ be the same as x̃ but with � added to
the even edges and �� added to the odd edges. Let x� be the same
but now � added to the odd edges and �� added to the even edges.
Note that x = 1

2 (x+ + x�).
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Further, since x̃ is optimal solution and wT x̃ = 1
2 (wTx+ + wTx�), it

follows that both x+ and x� achieve the optimal value:

wTx+ = wTx� = wT x̃

Either x+ or x� have at least one less non-integral edge. One can
continue this process until all non-integral edges are eliminated,
resulting in a integral solution with the same objective value.
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Minimum/maximum spanning tree
Integer Program (IP) formulation of the MST problem

maximize
X

(i ;j )2E

wij xij

subject to
X

(i ;j )2ES

xij � jS j � 1 ; for all S � V

xij 2 f0; 1g ; for all (i ; j ) 2 E

Primal LP relaxation of the MST problem

maximize
X

(i ;j )2E

wij xij

subject to
X

(i ;j )2ES

xij � jS j � 1 ; for all S � V

xij � 0 ; for all (i ; j ) 2 E

fact 1. xij > 1 is not feasible (we do not need the upper bound on
xij ’s)
fact 2. a spanning tree satisfies the constraints with equality
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theorem. there exists an optimal integer solution of the primal LP, and
it achieves the same weight as the Kruskal’s algorithm

proof. we construct the dual LP

maximize
X
S�V

r(S)yS

subject to
X

S :(i ;j )2ES

yS � wij ; for all (i ; j ) 2 E

yS � 0 ; for all S � V

where r(S) = jS j � 1

we will find a solution y� = fy�SgS�V of this dual problem, and show
lemma 1. y� is a feasible solution of the dual
lemma 2.

P
S�V r(S)y�S =

P
(i;j )2MST wij

where MST is a Maximum Spanning Tree solution of the Kruskal’s
algorithm
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by weak duality theorem, a feasible solution of the dual provides an
upper bound on the primal problem

since we have found a pair of feasible primal and dual solutions (the
MST of Kruskal’s algorithm for the primal and y� for the dual) that
achieve the same objective value, this proves that the pair of solutions
are optimal for the primal and dual LP, respectively

we can conclude that the Kruskal’s Maximum Spanning Tree (MST)
solution is an optimal solution of the Primal LP relaxation (as well as
the optimal solution of the original IP formulation)

now we construct a dual solution y�
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Maximum bipartite matching
Bipartite graph G = (L;R;E)
Variable: jLj � jRj matrix X such that Xij = 1 indicate that we
include edge (i ; j ) in the matching
Integer Programming (IP) formulation

maximize
X
ij

Xij

subject to Xij 2 f0; 1g; 8(i ; j ) 2 EX
j

Xij � 1; 8i

X
i

Xij � 1; 8j

IP: non-convex feasible set
LP relaxation: take convex hull of the feasible set
Since feasible set of LP relaxation includes the feasible set of IP, the
optimal value of LP relaxation can only be larger

P�
IP � P�

LP
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Exercise: LP duality and LP relaxation

Integer Program (IP)

maximize
X

ij

Xij

subject to Xij 2 f0; 1g; 8(i ; j ) 2 EX
j

Xij � 1; 8i

X
i

Xij � 1; 8j

LP relaxation

maximize
X

ij

Xij

subject to 0 � Xij ; 8(i ; j ) 2 EX
j

Xij � 1; 8i

X
i

Xij � 1; 8j

variable vector: Xij 2 RjE j

objective: cTX with c = [1; : : : ; 1] 2 RjE j

constraints: AX � b with A 2 R(jLj+jRj)�jE j

Ai ;e =

(
1 if i 2 e
0 otherwise

b = [1; : : : ; 1] 2 RjLj+jRj

What is the dual LP?
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Maximum bipartite matching

Linear Programming relaxation

maximize
X

ij

Xij

subject to 0 � Xij ; 8(i ; j ) 2 EX
j

Xij � 1; 8i

X
i

Xij � 1; 8j

Dual problem

min
X

i

Yi +
X

j

Zj

s.t. 0 � Yi ; 8i

0 � Zj ; 8j

Yi + Zj � 1; 8(i ; j ) 2 E

The LP relaxation does not require Xij � 1.
Dual problem is solving minimum vertex cover: find smallest set of
nodes S such that at least one end of each edge is in S
From strong duality theorem, we know P�

LP = D�
LP

Consider IP formulation of the dual where Yi ;Zj 2 f0; 1g, then

P�
IP � P�

LP = D�
LP � D�

IP

This implies that minimum vertex cover is at least as large as
maximum bipartite matchingLinear Programming 6-43



Minimum weight vertex cover

Problem
I An undirected graph G = (V ;E) with node weights wi ’s
I A vertex cover is a set of nodes S such that each edge has at least one

end in S
I The weight of a vertex cover is sum of all weights of nodes in the cover
I Find the vertex cover with minimum weight

Integer Program (IP): xi = 1 if
node i is in vertex cover

minimize
X
i2V

xiwi

subject to xi + xj � 1; 8(i ; j ) 2 E

xi 2 f0; 1g ; 8i 2 V

LP relaxation

minimize
X
i2V

xiwi

subject to xi + xj � 1; 8(i ; j ) 2 E

xi � 0 ; 8i 2 V
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LP relaxation

minimize
X
i2V

xiwi

subject to xi + xj � 1; 8(i ; j ) 2 E

xi � 0 ; 8i 2 V

In the LP relaxation, we do not need xi � 1, since the optimal
solution x � of the LP does not change whether we have the constraint
xi � 1 to not.
Here is a simple proof by contradiction

I Suppose there exists an index i such that the optimal solution of the
above LP x �i is strictly larger than one.

I Then, let x �� be a vector which is same as x � except for x ��i = 1 < x �i .
I This x �� satisfies all the constraints, and the objective function is

smaller:
P

k x ��k wk <
P

k x �k wk .
I This contradicts the assumption that x � is the optimal solution of the

minimization
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When we solve the relaxed LP, we typically get fractional solutions
with 0 < x �

i < 1
One way to get integer solution is rounding:

x 0
i =

(
0 if x �

i < 0:5
1 if x �

i � 0:5

Claim. The rounded solution x 0 is feasible in the original problem
I We need to show that x 0i + x 0j � 1 for all (i ; j ) 2 E .
I This is true if one of x �i or x �j is larger than or equal to 0.5 .
I Again, this is also true since x � is a feasible solution of the LP

relaxation, which implies that x �i + x �j � 1. It follows that one of x �i or
x �j is larger than or equal to 0.5 .

I Then, either one of x 0i or x 0j is one.
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Claim. The weight of the vertex cover we get from rounding is at
most twice as large as the minimum weight vertex cover.

I Notice that
x 0i = min(b2x �i c; 1)

I Let P�
IP be the optimal solution for IP, and P�

LP be the optimal
solution for the LP relaxation

I Since any feasible solution for IP is also feasible in LP,

P�
LP � P�

IP

I The rounded solution x 0 satisfyX
i

x 0i wi =
X

i

min(b2x �i c; 1)wi (by construction)

�
X

i

2x �i wi (by definition)

= 2P�
LP (by definition)

� 2P�
IP (since relaxtion increases the feasible set)

Hence, OPTLP � 2OPTIP . LP relaxation of the minimum weight
vertex cover is a 2-approximation with the approximation ratio of two.
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Solving LP can be quite time consuming
A faster approach using dual LP

I LP relaxation

minimize
X
i2V

xiwi

subject to xi + xj � 1; 8(i ; j ) 2 E

xi � 0 ; 8i 2 V

I objective: maximize cTx with
ci = �wi

I constraint: Ax � b with
Ae;i = �1 if i 2 e .

I be = �1
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Dual LP maximize
X

(i;j )2E

`ij

subject to
X

j :(i;j )2E

`ij � wi ; 8i 2 V

`ij � 0 ; 8(i ; j ) 2 E

73 5 6
52 0

73 5 6
43 1

73 5 6
00 0

73 5 6
2.52.5 2.5

73 5 6
2.52.5 2.5

73 5 6
2.53 2.5

73 5 6
2.53 2.5

Algorithm: Primal/Dual approach
1 Initially set all `ij to 0 and all xi to 0. And

unfreeze all edges.

2 Uniformly increment all unfrozen `ij ’s until
for some node i we hit dual constraintP

j :(i ;j )2E `ij � wi .

3 Freeze edges adjacent to the newly
saturated node i .

4 Set xi = 1

5 While there are still unfrozen edges, go
back to step 2Linear Programming 6-49



Minimum weight vertex cover
Claim. The resulting xi ’s are primal feasible: xi + xj � 1,
8(i ; j ) 2 E .

I The algorithm continues until all edges are frozen
I edges are frozen only if one of the end node is saturated, and hence

xi = 1
Claim. The weight of the vertex cover found using primal/dual
approach is at most twice the value of the minimum weight vertex
cover.

I Let S be the vertex cover found using primal/dual approach.
I Let `�ij be the solution of primal/dual approach.
I Then, for all i 2 S (i.e. for all the frozen nodes that are saturated),

wi =
X

j :(i ;j )2E

`�ij

X
i2S

wi =
X
i2S

X
j :(i ;j )2E

`�ij

I Each `ij term can appear at most twice in the summationX
i2S

X
j :(i ;j )2E

`�ij � 2
X

(i ;j )2E

`�ij
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By weak duality theorem, a dual feasible `� of the maximization
problem (dual LP) is a lower bound on any primal feasible xX

(i ;j )2E

`�ij �
X
i

xiwi

Also, since any feasible solution of the primal IP (x �) is a feasible
solution for the LP relaxation (x )X

i

xiwi �
X
i

x �
i wi

putting it all togetherX
i2S

wi =
X
i2S

X
j :(i ;j )2E

`ij � 2
X

(i ;j )2E

`ij � 2
X
i

xiwi � 2
X
i

x �
i wi

Hence, again primal/dual algorithm is 2-approximation algorithm of
minimum weight vertex cover problem.
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there are implementations of the primal/dual algorithm with rum-time
linear in the number of edges

Clarkson’s greedy algorithm
Input: graph G = (V ;E) and weights w on V
Output: vertex cover C

F for all i 2 V set Wi  wi
F for all i 2 V set Di  di , which is the degree of node i
F initialize C  fg
F while E 6= ; do

i = arg minv2V nC
Wv
Dv

for all neighbors j 2 N (i), do
E  E n (i ; j )
Wj  Wj �

Wi
Di

Dj  Dj � 1
end for.
C  C supfig

F end while.
F output C
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Exercise

In a facility location problem, there is a set of facilities and a set of
cities, and our job is to choose a subset of facilities to open, and to
connect every city to one of the open facilities. There is a nonnegative
cost fj for opening a facility j , and a nonnegative connection cost ci ;j
for connecting city i to facility j . Given these as input, we look for a
solution that minimizes the total cost. Formulate this facility location
problem as an integer programming problem, and find its linear
programming relaxation.
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Homework 6

Problem 1. [Problem 7.29 from Algorithms by Dasupta,
Papadimitriou, and Vazirani]

A film producer is seeking actors and investors for his new movie.
There are n available actors; actor i charges si dollars. for funding,
there are m available investors. Investor j will provide pj dollars, but
only on the condition that certain actors Lj � f1; : : : ;ng are included
in the cast (all of these actors Lj must be chosen in order to receive
funding from investor j ).
The producer’s profit is the sum of the payments from investors minus
the payments to actors. The goal is to maximize this profit.

(a) Express this problem as an integer program in which the variables take
on values in f0; 1g. [hint: an inequality constraint
x � minfy1; y2; : : : ; ykg is equivalent as k linear inequality constraints
x � y1, x � y2, . . . , x � yk ]

(b) Now write the linear program relaxation of this problem.
(c) Explain that there must in fact be an integral optimal solution.
(d) Write the dual linear program of the LP relaxation found in part (b).
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Homework 6
Problem 2.

In the most general case of linear programming, we have a set I of
inequalities and a set E of equality constraints over n variables (Notice
E is a set of integers between 1 and n , and not a set of edges as we
are used to using it.). Among those n variables, a subset of N are
constrained to be non-negative. The dual has m = jI j + jE j variables,
of which only a subset are constrained to be non-negative.

maximize a1z1 + � � �+ anzn

subject to Di1z1 + � � �+ Dinzn � di ; 8i 2 I

Dj1z1 + � � �+ Djnzn = dj ; 8j 2 E

zk � 0; 8k 2 N

Recall the canonical form of LP and its dual we studied in class:

F (canonical) Primal LP

maximize cTx

subject to Ax � b

x � 0

F (canonical) Dual LP

minimize bTy

subject to ATy � c

y � 0
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Homework 6

Problem 2. (continued)

(a) Rewrite the general LP in the form of (canonical) Primal LP. What is
c, A, b, and x in terms of a , D , d , and z ?

(b) Write the (canonical) Dual LP of the problem found in part (a).

(c) Simplify the problem found in part (b) as

minimize g1w1 + � � �+ gmwm

subject to F1iw1 + � � �+ Fmiwm � fi ; 8i 2 N

F1jw1 + � � �+ Fmjwm = fj ; 8j =2 N

wk � 0; 8k 2 I

In other words, write g , F , f in terms of a , D , d .
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Homework 6
Problem 3. (The dual of maximum flow)

In the maximum flow problem, we are given a directed graph
G = (V ;E) with a source node s and a sink node t . Each edge
(i ; j ) 2 E is associated with a capacity cij . A flow consists of a vector
valued variable f = ffij g(i ;j )2E , satisfying the capacity condition
(0 � fij � cij for all edges) and conservation condition (total incoming
flow is equal to the total outgoing flow at each node that is not s or
t). The value of the flow is the total quantity leaving the source (or
equivalently arriving the sink):

size(f ) =
X

i :(s;i)2E

fsi

This can be formulated as a linear program:

maximize size(f )

subject to 0 � fij � cij ; 8(i ; j ) 2 EX
k :(k ;i)2E

fki =
X

k :(i ;k)2E

fik ; 8i =2 fs ; tg
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Homework 6

Problem 3. (continued)
Consider a general directed network G = (V ;E), with edge capacities
cij ’s.

(a) Write down the dual of the general flow LP above. Use a variable yij

for each directed edge (i ; j ), and xi for each node i =2 fs ; tg.
(b) Show that any solution to the general dual LP must satisfy the

following property: for any directed path from s to t in the network,
the sum of the yij values along the path must be at least 1.

(c) What are the intuitive meaning of the dual variables? Show that any
s � t cut in the network can be translated into a dual feasible solution
whose cost is exactly the capacity of that cut. More precisely, given a
s � t cut, construct yij ’s and xi ’s from the cut, such that the dual
variables satisfy all the constraints in the dual LP.
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