
IE 512 Graphs, Networks, and Algorithms

Midterm

Some problems are more difficult than the others, so read all the problems before you begin to solve
them.

Problem 1 There is a postman, who parks his car at a place and wants to walk around delivering mail
to every street and return to the car. He wants to minimize the total number of streets that he visits. This
can be formulated as a graph problem: given a connected undirected graph G = (V,E), find a closed walk
of minimum length that traverses every edge at least once. The length of a walk is defined as the number of
edges included in that walk.

(a) Using Eulerian cycle, give a polynomial time algorithm that gives a closed walk of length at most 2|E|.

Given an undirected weighted graph G = (V,E) with weights wij ’s, we want to find the shortest possible
route (closed walk) that visits each node at least once and returns to a start node.

(b) Using Minimum spanning tree, give a polynomial time algorithm that gives a closed walk of length at
most 2(

∑
(i,j)∈MST wij), where MST is the set of edges in the minimum spanning tree.

Problem 2 (Birkhoff-von Neumann theorem)
A double stochastic matrix is a square matrix with non-negative entries whose row sums and column

sums are all ones (the row sum of the i-th row is the sum of the entries in that row). A magic square is a
square matrix with non-negative integer entries whose row sums and columns sums are all equal. We call
this common value of the row and columns sums, the weight of a magic square. Given a magic square of
weight d, if we divide all the entries of the magic square by d, we get a doubly stochastic matrix. Conversely,
given a doubly stochastic matrix with rational entries, the multiplying the entries of this double stochastic
matrix by the least common denominator gives a double stochastic matrix with weight equal to that least
common denominator.

2 1 0 0
0 1 0 2
0 0 3 0
1 1 0 1




2/3 1/3 0 0
0 1/3 0 2/3
0 0 1 0

1/3 1/3 0 1/3




1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0


a magic square of weight 3 (left) a doubly stochastic matrix (middle) and a permutation matrix (right)

A magic square of weight one is called a permutation matrix, since for any permutation matrix T ∈ Rm×m,
there exists a permutation σ over [m] = {1, . . . ,m} such that

Ti,j =

{
1 if j = σ(i) ,
0 otherwise .

In other words, there is a one-to-one correlation between a permutation and a permutation matrix.
We want to prove the following Birkhoff-von Neumann theorem, step by step.

Theorem 0.1. Every doubly stochastic matrix is a convex combination of permutation matrices. Every
magic square of weight d is the sum of d (not necessarily distinct) permutation matrices.
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We only consider the magic squares, since the proof for the doubly stochastic matrices follows similarly.


2 1 0 0
0 1 0 2
0 0 3 0
1 1 0 1

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

+


0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0


an example of Birkhoff-von Neumann theorem

(a) Given an m ×m magic square M of weight d, consider a bipartite graph G = (A,B,E) where A =
{1, 2, . . . ,m} is the set of nodes corresponding to the rows of M , B = {1, 2, . . . ,m} is the set of nodes
corresponding to the columns of M , and E = {(i, j) : Mi,j > 0}. For any magic square M , prove that
for subset X ⊆ A,

|X| ≤ |N(X)| .

(b) Applying the Hall’s matching theorem, (a) implies that for any magic square M , there exists a perfect
matching in the bipartite graph G derived from M . Use this statement (inductively) to prove Theorem
0.1.

Problem 3 For an undirected graph G = (V,E), let λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues of the
adjacency matrix A, where

Ai,j =

{
1 if (i, j) ∈ E
0 otherwise

Let dave = 1
n

∑
i di be the average degree of the graph and dmax be the maximum degree. We know from

homework that
dave ≤ λ1 ≤ dmax .

(a) Let B be a symmetric matrix obtained from A by removing the i-th row and the i-th column from it,
for some integer i ∈ [n]. Let µ1 ≥ · · · ≥ µn−1 be the eigenvalues of B. Prove that

λ1 ≥ µ1 .

Figure 1: an example of 3-colorable graph
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(b) An undirected graph G = (V,E) is k-colorable if the nodes can be colored by k colors such that no
adjacent nodes have the same color. Precisely, a k-colorable graph has a k way partition P1, . . . , Pk ⊆ V
such that Pi ∩ Pj = ∅ for all i, j ∈ [k] and ∪ki=1Pk = V satisfying

(i, j) /∈ E if i ∈ P` and j ∈ P` for some ` ∈ [k] .

Prove that a graph with the maximum degree dmax is (dmax + 1)-colorable.

(c) Using induction on the size of the graph, prove that an undirected graph with largest eigenvalue of the
adjacency matrix λ1 is (bλ1c+ 1)-colorable.

Problem 4 Consider a natural random walk on an aperiodic and connected undirected graphG = (V,E)
with n nodes. The random walk follows the transition matrix P = AD−1 where A is the adjacency matrix
and D is a diagonal matrix with degree of the nodes in the diagonals. The stationary distribution of this
random walk is π = 1∑n

i=1 di
d where d = [d1, . . . , dn]T is a vector in Rn.

Now, consider the symmetric matrix M = D−1/2AD−1/2. It is well known fact in linear algebra that
symmetric matrices can be diagonalized as M = UΛUT , where U is an orthogonal matrix such that UUT =
UTU = I and Λ = diag(λ1, . . . , λn) is a diagonal matrix with the eigenvalues of M in the diagonals. Further,
the columns of U are the eigenvectors of M .

(a) Prove that the largest eigenvalue of M is λ1 = 1, and the corresponding (normalized) eigenvector is
u1 = 1√∑n

i=1 di

d1/2 where d1/2 , [
√
d1, . . . ,

√
dn].

(b) Prove that D1/2
(
λ1u1u

T
1

)
D−1/2p(0) = π for all probability distribution p(0).

(c) Consider a random walk starting with initial distribution p(0) after t time steps: p(t) = P tp(0). Since
P = D1/2MD−1/2, we can write

P t = D1/2M tD−1/2

= D1/2UΛtUTD−1/2

= D1/2
( n∑
i=1

λtiuiu
T
i

)
D−1/2 .

Use the above representation to show that

p(t) = π +D1/2
n∑

i=2

λtiui
(
uTi D

−1/2p(0)
)
.

(d) In this problem, we prove a bound on the rate of convergence. Consider a random walk that starts at
node i, i.e. p(0) = ei , [0, . . . , 0︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0]. Then after t time steps, the probability that the random

walk is at node j is p
(t)
j where p(t) = P tp(0). Prove that the distance to the stationary distribution is

bounded by

|p(t)j − πj | ≤
√
dj
di
|λ2(P )|t ,

where λ2(P ) is the second largest eigenvalue of P .
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[ hint: you might find the following application of Cauchy-Schwarz inequality useful.]

n∑
k=2

|eTj uk||uTk ei| ≤

√√√√ n∑
k=2

|eTj uk|2

√√√√ n∑
k=2

|uTk ei|2

≤

√√√√ n∑
k=1

|eTj uk|2

√√√√ n∑
k=1

|uTk ei|2

= 1
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