
7. Online algorithms

Problem formulation

Competitive ratio

Buy-vs-rent problem

Secretary problem

Online algorithms 7-1

Online algorithms

Problem
I Input: provided as a “stream” of data
I Objective: make optimal decision at each point in time, based on the

data provided so far
I Two approaches:
I Probabilistic

F input from a (parametrized) distribution
F learn the distribution and then predict next input

I Worst-case
F input can be anything, in particular worst-case

I We focus on worst-case analysis
I We will see that probabilistic approaches work quite well under

worst-case
I Example: Online bipartite matching [Karp,Vazirani,Vazirani 1990]

F Any deterministic algorithm has a competitive ratio at most 1=2

Online algorithms 7-2

Online algorithms

Example: buy-vs-rent
I Consider buying vs. renting skiing equipment
I Cost $500 to buy and $50 to rent
I It is optimal to rent if skiing less than 10 times, but we do not know

how many times we will ski
I at each time k we are given a choice to rent or buy, unless we have

already bought
I Input at time k : the fact that we are going on a k -th ski trip
I Decision: rent or buy
I Deterministic strategy

F rent until n and buy
F completely described by n

I What is a good strategy?

Online algorithms 7-3

Online algorithms
Competitive analysis of an online algorithm

I analyze the performance of an online algorithm by comparing it to the
best off-line algorithm that can see the data in advance

I Competitive ratio of an online algorithm
F Imagine adversary deliberately chooses difficult data for your algorithm
F compare to the optimal algorithm for that data
F competitive ratio is the ratio between the cost of the online algorithm

under adversarial data and the optimal algorithm
F let data� = arg maxCost(ALGn ; data)

competitive ratio(ALGn) =
maxdata Cost(ALGn ; data)
minALG Cost(ALG; data�)

Competitive ratio of an algorithm for buy-vs-rent problem
I If n = 1, the worst case data is never ski after first trip. Then cost of

online algorithm is $500. Cost of the optimal algorithm is $50.
Therefore, competitive ratio is 10.

I Similarly, for general n � 10, cost of online algorithm is
$50*(n-1)+$500. Cost of optimal algorithm is $50*n.

Competitive ratio = 1 +
9
n

I what if n > 10?Online algorithms 7-4

Online algorithms
Competitive analysis

0 2 4 6 8 10 12 14 16 18 20
1

2

3

4

5

6

7

8

9

10

Competitive ratio is minimized when n = 10
General rule for buy-vs-rent problem is to keep renting until what we
have spent equals the cost of buying
Claim. Competitive ratio of 2 can be always achieved for general
buy-vs-rent problem. (Homework)
Intuitively, “probabilistic” perspective is that once we reach 10, we can
predict that there will be another 10 more.

Online algorithms 7-5

Secretary problem

Problem
I There are n candidates and one position
I Objective: hire the best one
I Input: each time invite one candidate for an interview. At time k , we

know exact ranking of k candidates seen so far.
I Decision: at time k , can choose to hire the current candidate (k -th) or

move on to the next one.
I How can we maximize the probability of hiring the best one? (We only

care whether we got the best one or not)
Applications

I Housing, online dating, etc.
I Googol game [Scientific American, 1960]

F Alice writes n numbers between 1 and Googol(10100) on n sheets of
paper

F Bob turns one piece over at a time and stop when he thinks he has the
largest among n

Online algorithms 7-6

Secretary problem
Optimal strategy

I Assume candidates are ordered randomly
F There are n candidates
F Let 1 be the best candidate, and n the worst candidate
F They arrive in a random order: n! possible permutations have equal

probability
(equivalently, we can choose to invite candidates in random order)

F Let ck be the random variable representing the ranking(1 is best) of the
candidate interviewed at time k

P(c1 = m) = 1=n (= (n � 1)!=n!)

P(ck = m) = 1=n

P(c2 < c1) = 1=2 (by symmetry)

P(ck < c1; : : : ; ck�1) = 1=k

P(1 2 fc1; c2; : : : ; ckg) = k=n

P(best among first k candidates is in the fist `) = `=k

F Conditional probability: P(B jA) = P(A and B)=P(A)

P(best among first k candidates is in the fist `jck+1 = 1) = `=k
F two events are independentOnline algorithms 7-7

Secretary problem
Consider a strategy of

I first phase: interview t candidates without hiring any
I second phase: after time t , continue until you meet someone who is

better than everyone seen so far, and hire that person
I precisely, look at c1; : : : ; ct and then find the first j such that

cj < c1; : : : ; cj�1
Analyzing the probability of success

P(we succeed) =

nX
j=t+1

P(we hire j -th candidate and succeed)

P(hire t + 1-th candidate) = P(ct+1 < fc1; : : : ; ctg) =
1

t + 1

P(hire t + 1-th and succeed) = P(ct+1 = 1)P(ct+1 < fc1; : : : ; ctgjct+1 = 1) =
1
n

P(hire t + 2-th and succeed) = P(ct+2 = 1)� P(t + 1 is not hired | ct+2 = 1)

=
1
n
P(t + 1 is not hired)

=
1
n
P(best among first t + 1 candidates is in first t)

=
1
n

t
t + 1Online algorithms 7-8

Secretary problem

Analyzing the probability of success

jt1 j-1 n

P(hire j -th and succeed) = P(cj = 1)� P(t + 1; : : : ; j � 1 are not hired | cj = 1)

=
1
n

t
j � 1

The success probability is

P(we succeed) =

nX
j=t+1

P(we hire j -th candidate and succeed)

=

nX
j=t+1

1
n

t
j � 1

'
t
n
(ln(n)� ln(t))

We used ln(n + 1) �
Pn

i=1 1=i � 1+ ln(n) and let
Pn

i=1 1=i ' ln(n)

Online algorithms 7-9

Secretary problem
optimal strategy

I We analyzed the success probability of a strategy that waits until time t

P(success) =
t
n
(ln(n)� ln(t))

I we want to maximize this probability

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

I taking the derivative, (and assuming n to be continuous for simplicity)
the success probability is maximized at t = n=e

I the success probability is 1=e
I we can make this argument rigorous by maximizing over integer valued

n , but more complicated

Online algorithms 7-10

Paging and caching
Problem

I We have two memories:
F A larger but slower hard disk

address 1 2 : : : : : : n
content x1 x2 : : : : : : xn

F A faster but smaller RAM
1 2 : : : k

pointer i1 i2 : : : ik
copied content xi1 xi2 : : : xik

I input: sequence of requests to hard disk

31; 3; 12; 3; 3; 5; 3; 3; 5; 3; 21; 5; 35; 12; 4; 6; 3; 1; 12; 4; 12; 3
I action:

F each time a request comes in, we first look up in the RAM whether we
have the content of that address stored in the RAM

F If we have a hit accessing RAM takes negligible time
F If we have a miss we need to fetch the entry from the hard disk
F At no extra cost (time), we (always) store the fetched data in RAM
F If the RAM is full, we need to delete one of the entries already stored

to make room
F decision: which one should we delete?Online algorithms 7-11

Paging and caching

cost: total number of misses (which is the only non-negligible time)
optimal off-line algorithm minimizing the total number of misses

I Belady’s MIN algorithm
I Elegant proof using dynamic programming
I Each time we have a miss, swap out the entry whose next use will

occur farthest in the future
I Example with k = 3

requests 31 3 12 3 5 3 5 21 5 31 12 3
RAM 31 31 31 31 31 31 31 31 31 31 31 31

3 3 3 3 3 3 21 21 21 21 21
12 12 5 5 5 5 5 5 12 3

miss o o o o o o o

I Problem: in practice, requests arrive in an online fashion, and we
cannot predict future requests

Online algorithms 7-12

Paging and caching

A practical online algorithm
I Least Recently Used (LRU) heuristic
I Use how much time has passed since last use in the past as an

approximation of how soon it will be used in the future

requests 31 3 12 3 5 3 5 21 5 31 12 3
MIN 31 31 31 31 31 31 31 31 31 31 31 31
RAM 3 3 3 3 3 3 21 21 21 21 21

12 12 5 5 5 5 5 5 12 3
miss o o o o o o o
LRU 31 31 31 31 5 5 5 5 5 5 5 3
RAM 3 3 3 3 3 3 3 3 31 31 31

12 12 12 12 12 21 21 21 12 12
miss o o o o o o o o

I Claim. For any sequence of requests, let m be the number of misses
occurred using the best off-line algorithm with size-k RAM. Then, for
the same sequence of requests, LRU with a size-k RAM causes at most
km misses.

I Therefore, competitive ratio is at most k

Online algorithms 7-13

Paging and caching

Proof.
I For the proof, we divide the input sequence i1; : : : ; im into phases as

follows.
I Let t be the first time at which we see the (k + 1)-th new request.
I Then the first phase is i1; : : : ; it�1.
I Next, consider remaining sequence it ; : : : ; im and recursively divide it

into phases.
I For example, if k = 3 then the input sequence can be divided into

phases as
31; 3; 12; 3; 5; 3; 3; 21; 3; 31; 12; 3

[31; 3; 12; 3]| {z }
Phase 1

; [5; 3; 3; 21; 3]| {z }
Phase 2

; [31; 12; 3]| {z }
Phase 3

I In each phase, LRU algorithm can cause at most k misses, since there
are only k distinct requests in each phase

I Let us not worry about the last phase which might not have k distinct
requests, since the effect of the boundary dies out as the sequence gets
longer

Online algorithms 7-14

Paging and caching
Proof. (continued.)

I Now, move the first item in each phase to the previous phase

[31; 3; 12; 3;5]; [3; 3; 21; 3;31]; [12; 3]

F each phase now has either k or k + 1 distinct requests (except for the
last phase)

I We claim that at each phase the MIN algorithm misses at least one
request

F Case 1: a phase has k + 1 distinct requests
Then MIN algorithm must miss at least one request, since the RAM
size is only k

F Case 2: a phase has k distinct requests
This only happens if the last request of the previous phase is not
repeated in current phase
But, the last entry of the previous phase must be stored in current
RAM at the beginning of current phase (at the beginning of Phase 2,
x5 which is the content of HARD DISK at address 5 must be stored in
RAM). Even in the best case, only k � 1 distinct requests of Phase 2
can be read from RAM, and at least one request has to be fetched
from HARD DISK

Online algorithms 7-15

Paging and caching

Finally, we know that
1. LRU causes at most k � p misses, where p is the total number of phases
2. MIN causes at least p misses

Therefore, the competitive ratio is at most k for LRU.

Online algorithms 7-16

Expert advice

Problem
time 1 2 : : : t : : : T

event of interest +1 �1 : : : �1 : : : +1
expert 1 +1 �1 : : : �1 : : : +1
expert 2 �1 �1 : : : �1 : : : �1
expert 3 +1 +1 : : : +1 : : : +1

...
...

...
expert n +1 +1 : : : �1 : : : �1
prediction +1 �1 : : : �1

I at time t , make prediction of the “event of interest” at time t based on
experts’ advice on the event, and their past history

I once we make a prediction, the true event of interest at time t is
revealed immediately

I Optimal offline algorithm: that chooses one expert that makes the
smallest number of mistakes (knowing the ground truths)

I Online algorithm: multiplicative weight

Online algorithms 7-17

Expert advice

Multiplicative weight
I assigns a weight w t

i to expert i at time t
I initially: w0

i = 1
I update rule: divide by 2 the weight of the experts that were wrong
I prediction:

F let x t
i be the expert i ’s opinion at time t

F let w t
+ =

P
i :x t

i =+
w t

i be the summed weight of experts who said + and

w t
� =

P
i :x t

i =�
w t

i be the sum of weights of experts who said �
F Predict + if w t

+ � w t
�, and � otherwise

time 1 2 3 : : : T
event of interest +1 �1 �1 : : : +1

expert 1 +1(1) �1(1) �1(1) : : : +1
expert 2 �1(1) �1(1=2) �1(1=2) : : : �1
expert 3 +1(1) +1(1) +1(1=2) : : : +1
expert 4 +1(1) +1(1) �1(1=2) : : : �1
prediction +1 +1 �1

Online algorithms 7-18

Expert advice

Definitions.
I Let bt be the ground truth event of interest at time t

I Define an indicator for mistakes m t
i =

�
0 if x t

i = bt

1 if x t
i 6= bt

I Let mi =
PT

t=1 m t
i be the total number of mistakes by expert i

I Let m t
A be the indicator that our algorithm makes a mistake at time t

I Let mA =
PT

t=1 m t
A be the total number of mistakes by multiplicative

weight
I Let w t =

Pn
i=1 w t

i be the total weight at time t

Theorem. mA � 1
log2(4=3)

(mi + log n), for every i (including the
best expert).
This shows that the number of mistakes is a constant times the
mistakes of the best expert, plus an extra logarithmic term

Online algorithms 7-19

Expert advice
Proof.

I We claim that if we make a mistake at time t , the weight decreases as

w t+1 � (3=4)w t

F If we make a mistake at t (and let’s assume bT = +1), then w t
� � w t

+.
F Then, w t

� � (1=2)w t and w t
+ � (1=2)w t

F The weights w t
� will be decreased in the following step by 1=2

F w t+1 = w t
+ + (1=2)w t

� = (1=2)w t + (1=2)w t
+ � (3=4)w t

I By recursion,

wT+1 �

TY
t=1

�3
4

�m t
A
w0 � n

�3
4

�mA

I For each expert i , the final weight is 2�mi , and
1

2mi
= wT+1

i � wT+1

I Putting these together, we get for every expert i
1

2mi
� n

�3
4

�mA

I This proves mA � 1
log2(4=3)

(mi + log n)
Online algorithms 7-20

Expert advice
A mixed strategy

I Action:
F choose pt

i
F at time t follow expert i ’s advice with probability pt

i
I Loss:

F m t
i 2 [�1; 1] is the loss incurred when following expert i

F loss is revealed after our action
F negative loss means gain

I Expected loss:
Pn

i=1 m t
i p

t
i

I Want to minimize the total expected loss
mX

i=1

TX
t=1

m t
i p

t
i

I compare it to the best expert

min
i2f1;:::;ng

TX
t=1

m t
i

I General model: general event (not binary), general loss (cf. mistake/no
mistake).

I Idea: track weight corresponding to the reliability or confidenceOnline algorithms 7-21

Expert advice

Multiplicative weight (for general model)
I assigns a weight w t

i to expert i at time t
I initially: w0

i = 1
I update rule: for some � 2 (0; 1=2),

w t+1
i = (1� �m t

i)w
t
i

I action:
F Let w t =

Pn
i=1 w t

i
F Choose expert i ’s advice with probability

pt
i =

w t
i

w t

Online algorithms 7-22

Expert advice
Analysis of multiplicative weight

I Let the expected loss be m t
A =

Pn
i=1 m t

i p
t
i

I And the total expected loss be mA =
PT

t=1 m t
A

I Also, mi =
PT

t=1 m t
i

Theorem. We can get arbitrarily close to the best expert. Precisely,
for any i ,

mA � mi + �
TX

i=1

jm t
i j+

lnn
�

Choosing the value of � as a function of known parameters T and n
(mi ’s are unknown)

I Since mi � T ,

mA � mi + �T +
lnn
�

I The right-hand side is minimum when T � lnn=�2.
I Setting � =

p
lnn=T .

mA � mi + 2
p

T lnn

I For the choice of �, we get an additive error, growing with T and lnn
Online algorithms 7-23

Expert advice
Lemma. For all � 2 [�1=2; 1=2],

e���2 � 1 + � � e�

I Proof.
I First, plot on MATLAB.

e=[-1:0.01:1];
plot(e,exp(e-e.^2),e,1+e,e,exp(e));

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

Online algorithms 7-24

Expert advice

Proof. Upper bound: 1 + � � e�

I Claim f (�) = e� � 1� � � 0 for all �.
F First, notice that f (�) is a convex function, since

f 00(�) = e� � 0

F Next, since it is a convex function, we can find the global minimum
value of the function by setting the derivative to zero.

f 0(�) = e� � 1 = 0

Hence, the function f (�) is minimum at � = 0 with f (0) = 0
F Therefore, the function is a non-negative function

I Convexity of a twice differentiable function: the following are
equivalent

F f (x) is convex
F f (ax + (1� a)y) � af (x) + (1� a)f (y) for all a 2 [0; 1] and all x ; y
F f (x) + f 0(x)(y � x) � f (y) for all x ; y
F f 00(x) � 0 for all x

Online algorithms 7-25

Expert advice

Proof. Lower bound: e���2 � 1 + �
I We first show it for � 2 [0; 1].

F Similarly as before, we can show that

ex � 1 + x + x 2

for x 2 [0; ln 2]
F Let f (x) = 1 + x + x 2 � ex

f 00(x) = 2� ex � 0 implies the function is convex in x 2 [0; ln 2]
f 0(0) = 0 implies the function is minimum at x = 0 with f (0) = 0
Hence, the function is non-negative

F Then, for � 2 [0; 1],

e���
2
� 1 + �� �2 + �2 � 2�3 + �4 � 1 + �

Online algorithms 7-26

Expert advice

Proof. Lower bound: e���2 � 1 + �
I Next, we show it for � 2 [�1=2; 0].

F Similarly, we can show that

ex � 1 + x + (1=2)x 2

for x 2 [�1; 0]
F Let f (x) = 1 + x + (1=2)x 2 � ex

f 00(x) = 1� ex � 0 implies the function is convex in x 2 [�1; 0]
f 0(0) = 0 implies the function is minimum at x = 0 with f (0) = 0
Hence, the function is non-negative

F Then, for � 2 [�1=2; 0],

e���
2
� 1 + �� �2 +

1
2
�2 � �3 +

1
4
�4 � 1 + �

Online algorithms 7-27

Expert advice
Proof of the main theorem

I For each expert i , the weight of that expert at the end is

wT+1
i =

TY
i=1

(1� �m t
i)

I We claim that the total weight in the end is

wT+1 = n �
TY

t=1

(1� �m t
A) (1)

I As before, weight of one expert is upper bounded by the sum

wT+1
i � wT+1

I Putting these together

TY
t=1

(1� �m t
i) � n �

TY
t=1

(1� �m t
A)

Online algorithms 7-28

Expert advice
Proof of the main theorem

TY
t=1

(1� �m t
i) � n �

TY
t=1

(1� �m t
A)

e���
2
� 1 + � � e�

I We get,

TY
t=1

(1� �m t
A) �

TY
t=1

e��m t
A � e��

PT

t=1
m t

A � e��mA

TY
i=1

(1� �m t
i) �

TY
t=1

e��m t
i �(�m t

i)
2
� e��mi��

2
PT

t=1
(m t

i)
2

I together, using (m t
i)

2 � jm t
i j, we get

mA � mi + �

TX
t=1

jm t
i j+

lnn
�

Online algorithms 7-29

Expert advice

Proof of claim (1): wT+1 = n �
QT

t=1(1� �m t
A)

I Recall that m t
A =

PT
t=1 pt

i m
t
i =

PT
t=1

w t
i

w t m t
i

w t+1 =

nX
i=1

w t+1
i

=

nX
i=1

(1� �m t
i)w

t
i

= w t � �

nX
i=1

m t
i w

t
i

= w t � �w t
nX

i=1

m t
i
w t

i

w t

= w t � �w t
nX

i=1

m t
i p

t
i

= w t � �w tm t
A = w t (1� �m t

A)

Online algorithms 7-30

Expert advice

Proof of claim (1) continued
I By recursion,

wT+1 = wT (1� �m t
A)

= wT�1(1� �m t
A)(1� �m t�1

A)

= w0 �
TY

t=1

(1� �m t
A)

I And w0 = n .

Online algorithms 7-31

Bin packing

Data: list of n items a1; : : : ; an of size ai 2 (0; 1].
Goal: pack these items into minimal number of unit capacity bins
Items arrive in on-line fashion
You make assignments each time and cannot change bin-allocation
afterwards

Algorithms
I Next fit algorithm

F Start from the first bin, and call it active
F If the next incoming fit the current active bin, then allocate that item

in the current active bin
F Otherwise, create a new bin and call it active
F Only keep one active bin at a time

I Best fit algorithm
F Keep track of all bins
F Allocate items in a bin that leaves smallest empty space in the bin

Online algorithms 7-32

Bin packing

Competitive analysis
I Let L = (a1; : : : ; an).
I NFA(L) be the number of bins required by next fit algorithm on data L
I OPT (L) be the number of bins required by the optimal off-line

algorithm on the same data L

competitive ratio =
NFA(L)
OPT (L)

I Claim 1. Competitive ratio � 2.
I Proof 1.

F Two adjacent bins must have items of size > 1
F If not, those items would have been assigned to the same bin.
F Hence, the total size of the items is

P
i ai >

1
2NFA(L)

F But the number of bins must be at least OPT (L) �
P

i ai

Online algorithms 7-33

Bin packing

Competitive analysis
I Claim 2. Competitive ratio � 2
I Proof 2.

F Consider a sequence of 2m items f1=2; 1=m ; 1=2; 1=m ; : : :g
F The Next Fit Algorithm takes m bins
F The optimal offline algorithm uses (1=2)m + 1 bins

Competitive ratio =
m

m=2 + 1
=

2
1 + 2=m

F Taking m large, we get that the competitive ratio can be made as close
as to two as we want

Online algorithms 7-34

Bin packing

Competitive analysis of Best Fit Algorithm
I Claim 3. Competitive ratio = BFA(L)

OPT (L) � 5=3
I Proof 3.

F Consider a sequence of 6m items of size 0:15, 6m items of size 0:34,
and 6m items of size 0:51

F We can pack these into OPT (L) = 6m bins using the optimal offline
algorithm

F BFA requires m + 3m + 6m = 10m
F Competitive ratio � 5=3

Online algorithms 7-35

Homework 7

Problem 1.
Prove that Competitive Ratio of 2 can be always achieved for general
buy-vs-rent problem using a deterministic algorithm. First explain the
deterministic algorithm, and then prove that the competitive ratio is
always bounded by two for general cost of buying ($B) and renting
($R).

Online algorithms 7-36

Homework 7
Problem 2.
We consider the following scheduling problem. There are M machines
and J jobs. Each job j takes tj time to finish independent of which
machine is used. We want to come up with an assignment for each
machine i . Let Ai be the set of jobs assigned to machine i . Then, the
completion time for this assignment and this machine is Ti =

P
j2Ai

tj .
We want to find assignments such that (i) each job is assigned to one
of the machines, and (ii) the maximum completion time is minimized.

minimizefAigi2f1;:::;Mg
max

i2f1;:::;Mg
Ti

We let this minimum value be OPT (L), where L = ftj gj2f1;:::;Jg is
the list of completion times.

Machine 1 Machine 2 Machine 3 Machine 4

job 1 job 2 job 3
job 4

job 5

job 6

T1 = t1
T2 = t2

T3 = t3

T4 =
t4+t5+t6

Online algorithms 7-37

Now consider a greedy approach to solve this problem. First sort the
jobs in an decreasing order such that t1 � t2 � : : : � tJ . Then, the
greedy algorithm iteratively assigns at iteration k , the current job k
with completion time tk to the machine with the smallest load at
current time. Once we assign a job to a machine, we never change the
assignment. In this sense you can think of it as an online algorithm,
working on a sorted and online input data.

Let GA(L) be the maximum completion time maxi2f1;:::;MgTi for the
greedy algorithm. We want to prove that for any input L,

GA(L)
OPT (L)

� 3
2
:

Prove this claim step by step in the following.
(a) If J � M , prove that the greedy algorithm is optimal.

GA(L) = OPT (L)

(b) Now for any J , let i be one of the machines that is assigned maximum
load GA(L) using the greedy algorithm. If i has only one job, then
prove that the greedy algorithm is optimal.

GA(L) = OPT (L)

Online algorithms 7-38

(c) Again for any J , let i be one of the machines that is assigned
maximum load GA(L) using the greedy algorithm. Let j be the last
job assigned to machine i . Prove that

GA(L)� tj �
1
M

MX
i=1

Ti :

(d) If J > M , prove that, for any input L,

tM+1 �
1
2
OPT (L) :

(e) Prove that even the optimal algorithm requires the maximum
completion time to be at least the average completion time. Precisely,
prove

1
M

MX
i=1

Ti � OPT (L)

(f) Using (a); � � � ; (e), prove that

GA(L)
OPT (L)

�
3
2
:

(g) (Optional) Now, use similar ideas from above to prove that

GA(L)
OPT (L)

�
4
3
:

Online algorithms 7-39

