
0. Prerequisites: things you are expected to know already

Proof by induction

Proof by contradiction

Proof by transposition

Proof by example/construction

Recurrences

Prerequisites 0-1



Proof by induction

mathematical induction is a method used typically to prove a
statement for all positive integers, which works in two steps
1. base case: the first step of proving the statement for a given (typically

the first) integer (e.g. show the claim is true for n = 1)
2. induction case: the second step of proving that the statement for an

integer implies the statement for the next integer (suppose the claim is
true for n = k � 1 and prove it is also true for n = k)

example 1. summation

Show
nX

i=1

i =
n(n + 1)

2
for every positive integer n .
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a (formal) proof by induction is
I Let n be an arbitrary positive integer.
I base case: if n = 1, then

Pn=1
i=1 i = 1.

I induction hypothesis: assume inductively that
Pk

i=1 i = k(k+1)
2 for

every positive integer k < n .
I induction case:

nX

i=1

i = n +
n�1X

i=1

i

= n +
n(n � 1)

2
[induction hypothesis with k = n � 1]

=
n(n + 1)

2
:

I We conclude that
Pn

i=1 i = n(n+1)
2 .
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example 2. trees
a tree is an undirected graph of n nodes that is connected with no
cycle
a subtree of a tree T is a connected subgraph of T
a proper subtree is any tree except T itself

show that

The number of edges in a tree with n nodes is n � 1.

a formal proof by induction is
F Let T be an arbitrary tree.
F base case: if T has one node, then it has no edges
F induction hypothesis: assume that in any proper subtree of T with

number of nodes at most n , the number of vertices is one more than
the number of edges.

F induction case: consider an arbitrary tree T with n + 1 nodes. Since
by assumption a tree is connected with no cycle, if we remove a leaf
node i and the edge connecting i to the rest of the tree, the remaining
graph is a tree with n nodes. Then, we know from the induction
assumption that this tree has n � 1 edges. This proves that the original
graph with n + 1 nodes had n edges.

F We conclude the number of edges is one less than the number of nodes.Prerequisites 0-4



often, there exists alternative methods to prove the same claim

for example,
a proof (without induction): For an arbitrary tree T , choose an
arbitrary node to be the root. Because T is connected, there exists a
path from the root to every node. Because there is no cycle, there the
path is unique. Hence we can define a directed graph by directing every
edge of T outward from the root. On this directed acyclic graph, every
node has at most one edge directed into it since there is no cycle.
Every node except for the root has at least one edge directed into it,
since T is connected. We conclude that the number of edges is one
less than the number of nodes.
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example 3. recursive functions

define a function F : Z+ ! Z+ recursively by setting F (0) = 0 and
F (n) = 1 + F (bn=2c) for every positive integer n

For every positive integer n , F (n) = 1 + blog2 nc.

a proof by induction:
F Let n be an arbitrary positive integer.
F base case: for n = 1, F (1) = 1 + F (0) = 1.
F induction hypothesis: suppose F (k) = 1 + blog2 kc for every positive

k < n .
F induction case: we separate the proof into two cases, when n is even

and when it is odd. Suppose n is an even number:

F (n) = 1 + F (bn=2c)
= 1 + 1 + blog2(bn=2c)c [by induction hypothesis]

= 2 + blog2(n=2)c = 2 + blog2(n)� 1c = 1 + blog2(n)c :
when it is odd, F (n) = 2 + blog2(bn=2c)c = 2 + blog2((n � 1)=2)c =
1 + blog2(n � 1)c = 1 + blog2(n)c, where we used the fact that
blog2(n � 1)c = blog2(n)c for an odd n .

F We conclude that F (n) = 1 + blog2 nc.
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Proof by contradiction
to prove a statement to be true, prove that the statement being false
implies a contradiction

example:
p

2 is irrational
proof by contradiction:

Suppose
p

2 is rational. Then there exists two integers p and q such
that

p
2 = p=q and at least one of which is odd. It follows that

p2 = 2q2, which implies that p is even and can be represented as
p = 2r for some positive integer r . It again follows that q2 = 2r2,
which implies q is even.
So both p and q are even, and one of them must be odd, which is a
contradiction.
Therefore, the assumption that

p
2 is rational must be false.

example: minimum spanning tree

F given a connected undirected graph, a spanning tree is a subgraph that
is a tree can connects all the nodes together

F a single graph can have many spanning trees
F given a weighted graph, a minimum spanning tree is a spanning tree

with weight less than or equal to any other spanning tree
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a cut (S ;S c) of a graph is a partition of a graph into two disjoint
subsets of nodes S and S c that are joined by at least one edge

a cut-set (S ;S c) is a subset of edges whose end points are in different
subsets of the partition

if e is an edge in a cut-set (S ;S c) with weight strictly smaller than any other edges in
the cut-set, then e is included in any minimum spanning tree

proof by contradiction:
Assume e is an edge with minimum weight in a cut-set (S ;S c).
Suppose T is a minimum spanning tree and e is not included in T .
Consider T and add the edge e to get a graph G 0 with a single cycle.
Since this cycle includes nodes from both S and S c , there are at least
two edges in G 0 that connect S and S c . One of them is e and the
other one we call e 0. Remove e 0 from G 0 and call it T 0, we know it is
going to be a tree since we removed an edge from a cycle in G 0.
Comparing T and T 0 the only difference is the edge e 2 T 0 and
e 0 2 T . By assumption, we know that we < we0 . We can conclude
that T 0 has smaller weight than T , and this contradicts our
assumption that T is a MST.
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Proof by contraposition

to prove “if A then B”, show “if not B then not A”

similarly, to prove that x 2 A implies x 2 B one can show x =2 B
implies x =2 A

A
B

example: for all integer x , if x 2 is even then x is even
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example: if a graph G = (V ;E) has no cycle and jE j = jV j � 1,
then G is connected

proof by contraposition:
Assume G has no cycle and G is not connected, then we want to show
that jE j < jV j � 1.
Let k be the number of disconnected components in G , then we can
add k � 1 edges to make G connected but ensuring that it still has no
cycle. This connected graph with no cycle has jE j + k � 1 edges, and
from previous lectures, we know that a connected graph with no cycle
has number of edges equal to n � 1. Hence

jE j + k � 1 = n � 1 :

Since k � 2 by the assumption that G is disconnected, this implies
that jE j < n � 1, which finishes the proof.
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Proof by example/construction
prove by providing a construction or disprove by a counter-example

example: Eulerian cycle

a cycle in an undirected graph is a sequence of nodes starting and
ending at the same node, with each two consecutive nodes in the
sequence adjacent to each other in the graph

an Eulerian cycle is a cycle that visits every edge exactly once

For an undirected graph, if all nodes have even degree, then there exists a Eulerian cycle

proof by construction:
Start at any node and move to a neighboring node erasing the edge
you traversed as long as this does not make the graph disconnected.
When there is only one neighbor, in which case you have no choice but
to make the graph disconnected, you are allowed to move to that
neighbor. Since all node degree is even, if we enter a node then we are
guaranteed that there is a way out of that node. This process only
stops when we have successfully eliminated all the edges and we have
reached the node that we started from.
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Recurrences
a recurrence is a recursive description of a function
a recurrence consists of two types of cases: the base case and the
recursive case

f (0) = 0
f (n) = f (n � 1) + 1

a function is a solution to a recurrence if it satisfies all statements in
the recurrence

f (n) = n

in many cases, the running time of an algorithm is expressed as a
recurrence, or counting the number of objects in a set can also be
expressed as a recurrence
goal is to find an exact closed-form solution to such recurrences,
which gives a non-recursive description of the solution
when exact solution does not exist, or is too complicated, we resort to
asymptotic solutions of the form O(n log n) to Ω(n2= log n)
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Big-O notation

the big O notation describes the asymptotic behavior of a function,
when an argument tends towards a particular value of infinity (e.g.
n !1)

f (n) = O(g(n)) as n !1

if and only if there exists a positive constant C and a positive integer
N such that for all sufficiently large enough n � N

jf (n)j � C jg(n)j

similarly,

f (n) = Ω(g(n)) iff f (n) � C g(n)

f (n) = Θ(g(n)) iff C1 g(n) � f (n) � C2 g(n)
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Guess-and-check

the ultimate fail-safe method for solving a recurrence is guessing the
solution and checking the correctness

Tower of Hanoi
there are three rods and n disks of differing sizes

obeying the following rules, the goal is to move a stack of disks sorted
in ascending order of the size on one rod to another rod using only a
small number of allowed moves
1. only one disk can be moved
2. each move consists of taking the top disk from one stack and placing it

on the top of another stack
3. no disk may be placed on the top of a smaller stack
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Guess-and-check

(recursive implementation of the) optimal algorithm
assume we have the optimal algorithm for moving (n � 1) disks to
another rod, then the optimal algorithm is
1. first move (n � 1) disks on one rod(using an optimal algorithm for

n � 1 disks, freeing the third rod
2. move the largest disk to the empty rod
3. move the (n � 1) disks on the top of the largest rod

the optimality follows from the fact that without moving the largest
disk, it is impossible to move all disks to another rod

the proposed algorithm moves the largest disk in a minimum number of
moves, hence no other algorithm can achieve the goal with smaller
number of moves

the total number of moves T (n) for n disks gives a recurrence:

T (n) = 2T (n � 1) + 1
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Guess-and-check

expanding the recursion,

T (n) = 2T (n � 1) + 1
= 22T (n � 2) + 2 + 1
...

= 2kT (n � k) + 2k � 1

since T (1) = 1, we can now ‘guess’ the solution, which is

T (n) = 2n � 1
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Guess-and-check
Binary search

given a sorted array of n real numbers, find the relative position of a
input real-valued key v in the sorted array

binary search
F compare the input key with the value in the middle
F if the key is smaller, apply binary search recursively to the smaller half

of the array
F if the key is larger, apply to the larger half
F repeat until the array has only one number

the total number of comparisons, T (n), is given by a recurrence

T (n) = 1 + T (d(n � 1)=2e)
in the worst case, and expanding the recursion,

T (n) = 1 + T (d(n � 1)=2e) = 1 + T (d(1=2)d(n � 1=2)ee)
� 1 + 1 + T (dn=4e) � k + T (dn=2ke)

since T (1) = 1, we can ‘guess’ an upper bound on the solution, which
is T (n) = O(dlog2 ne)

Prerequisites 0-17


