
3. Paths, trees, and connectivity

Shortest paths problem

Cayley’s theorem

Prüfer code

Connectivity

Shortest paths 3-1



Shortest paths problem
I a directed graph G = (V ;E), and positive edge lengths fwij g
I find the shortest paths from a node s 2 V to all other nodes

fact 1. if a path (v1; v2; � � � ; vk�1; vk ) is the shortest path, then all subpaths
(v1; v2), (v1; v2; v3), � � � are shortest paths

fact 2. let di be the distance of the shortest path to node i . Then, a path P
from the source to node i is a shortest path if and only if
dj = dk + wkj for all (k ; j ) in the path

fact 3. there exists a shortest path tree where the unique path along the tree
from the source to any node is a shortest path

Shortest paths 3-2



Dijkstra’s algorithm for finding the shortest paths
F initialize the permanent label with the source s as P = f(s ; 0)g and

temporary label T = fg and repeat the following
F distance update: find the minimum distance to all neighbors of the

permanent labelled set by computing

di = min
j2P

dj + wj ;i

and update the temporary label set

T = f(i ; di ) j i in the neighborhood of Sg

F node selection: select a node in T with the smallest distance and move
it to P

step permanent label temporary label
0 f(N0; 0)g fg
1 distance update f(N0; 0)g f(N1; 3); (N2; 2)g
1 node selection f(N0; 0); (N2; 2)g f(N1; 3)g
2 distance update f(N0; 0); (N2; 2)g f(N1; 3); (N3; 6)g
2 node selection f(N0; 0); (N2; 2); (N1; 3)g f(N3; 6)g

3
...

...
...

Shortest paths 3-3



correctness of Dijkstra’s algorithm
proof by induction

F let Pt be the set of nodes and corresponding distances in permanent
labels at step t

F assuming that the distances in Pt are shortest path distances
F prove that the distance of the node selected at t + 1 is also the shortest

distance

F let j be the node selected at step t + 1, and the shortest path includes
an edge (i ; j ) for a node i in Pt with shortest distance di and an edge
length wij

F we prove that dj = di + wij is the shortest path distance from the
source s to node j

F consider another path from the source to node j that includes the edge
(k ; `) for a node k 2 Pt and a node ` =2 Pt

F then the distance of this path is at least dk + wk`
F by construction we know that di + wij � dk + wk`, because otherwise

node ` would have been selected at step t + 1
F this proves that dj = di + wij is the shortest path distance

running time of Dijkstra’s algorithm
I distance update at time k : out-degree of the node selected at time k
I node selection at time k : worst-case search over n � k nodes
I total complexity:

Pn
i=1 out-deg(i) +

Pn�1
k=1 (n � k) = jE j+ n(n�1)

2
Shortest paths 3-4



negative cycles
F the arguments so far holds even if we have edges with negative weights,

as long as there is no negative cycle
F if there exists a cycle with negative weights, then the shortest path

between two nodes is not well defined (we can repeat the negative
cycle many times)

F in this case, we want a robust algorithm which can detect presence of
negative cycles when they exist

F while Dijkstra algorithm does not confirm whether a negative cycle
exists or not, Bellman-Ford algorithm does (shortest paths decrease
after jV j � 1 iterations if there is a negative cycle)

define A(i ; k) to be the length of the shortest path from the source to
node i that uses at most k edges (it is 1 is such path does not exist)

Bellman-Ford algorithm for finding shortest paths
F for k = 1; : : : ; jV j � 1
F for all i 2 V compute

A(i ; k) = min
j2N (i)

fA(j ; k � 1) + wj ;ig ;

where it is assumed that wi;i = 0 for all i 2 V

running time is jE j operations per step and at most jV j � 1 steps,
which gives the running time of O(jE j jV j)Shortest paths 3-5



example: single-duty crew scheduling

The following table illustrates a number of possible duties for the
drivers of a bus company. We wish to ensure, at the lowest possible
cost, that at least one driver is on duty for each hour of the planning
period (9 am to 5 pm). Formulate and solve this scheduling problem as
a shortest path problem.

Duty hours 9-1 9-2 12-3 12-5 2-5 1-4 4-5
Cost 30 18 21 38 20 22 9

Shortest paths 3-6



Review: Minimum Spanning Tree

Q. Suppose we wanted to find a minimum spanning tree T for a connected
graph G with positive edge weights. Which of the following algorithms will
always produce such a tree? Justify your answers.

(a) For each vertex v , use Dijkstra’s algorithm to find the shortest paths from v
to all other vertices, and store any edge used in any of these paths in a set
Tv . Pick T to be any Tv with minimum weight.

(b) Sort the edges of G in decreasing order of weight. Initially, set T = G .
Then, iterate along this list of edges, removing an edge from T if and only if
doing this does not disconnect T .

(c) Pick any cycle in G , and remove an edge of maximum cost contained in this
cycle. Repeat until no cycles are left. The resulting graph is T .

cycle property of a MST: in any cycle C in the graph, if an edge has larger
weight than any of the other edges in C , then this edge cannot belong to an
MST.

Shortest paths 3-7



Counting labeled trees

consider a fixed labeled set of vertices V = f1; � � � ;ng

two (undirected) trees T1(V ;E1) and T2(V ;E2) are different if
E1 6= E2

1

2 3

1

2 3

1

2 3

Cayley’s theorem provides the number of distinct trees on V , and is
one of the most beautiful and elegant results in combinatorics

Cayley’s Theorem. The number of labeled trees with n vertices is
nn�2

Shortest paths 3-8



to prove Caley’s theorem, we define a one-to-one mapping between
labeled trees and Prüfer codes which are strings of length n � 2

to build a Prüfer code of a tree T (V ;E) we use the following iterative
procedure

F input: tree T
F output: Prüfer code P = a1a2 � � � an�2
F for t = 1; 2; : : : ;n � 1 do
F Let vertex i be the leaf with smallest label in T at step t , and

vertex j is its parent
F Remove vertex i and edge (i ; j ) from T
F Let at = j , bt = i
F end for
F return P = a1a2 : : : an�2

1

5 6

43

2

7

9 8

b = 2; 3; 4; 5; 1; 6; 8; 7
a = 3; 5; 5; 1; 6; 7; 7; 9

Shortest paths 3-9



I proposition. an�1 is always n .
I proof. A tree always has at least two leaves. Hence, n will never be

the smallest label in the leaves, until the last iteration when we have a
single node n .

I proposition. ai ; : : : ; an�2 are the set of non-leaves at step i � 1.
I proof. Each of ai ; : : : ; an�2 is a parent at some point in the future.

I proposition. Given P = a1; : : : ; an�2 and an�1 = n , one can always
reconstruct b = b2 : : : bn�2.

I proof by construction. We start reconstruction from b1 and use it to
reconstruct b2, and so on. First, notice that b1 is the smallest labeled
leaf. Although we do not know which labels are on the leaves, we do
know that b1 never appears in a1; : : : ; an�1 since b1 is immeiately
removed from the tree at first iteration. Hence, b1 is the smallest label
that does not appear in a1; : : : ; an�1.
Similarly, bi does not appear in ai ; : : : ; an�1, since bi is removed at
step i . Further, it does not appear in b1 : : : ; bi�1, since those labels are
already removed in previous steps. Hence, bi is the smallest number in
fb1; : : : ; bi�1g

c \ fai ; : : : ; an�2g
c .

Shortest paths 3-10



I proposition. Every tree is mapped to a unique Prüfer code.
I proof by contradiction. If every tree is not mapped to a unique tree,

then there exists two trees T1 and T2 that are mapped to the same
code P . However, we know that we can reconstruct the original tree, if
we have P . This is a contradiction, since the reconstruction can only
be one of T1 or T2.

Set of all trees with n nodes
Set of all Prufer codes 

of length n-1

???

I proposition. There are nn�2 Prüfer codes of length n � 2.
I proof. A Prüfer code is a sequence of numbers a1; : : : ; an�2. Each ai

can take any values in f1; : : : ;ng.

Shortest paths 3-11



I proposition. Every nn�2 Prüfer code P leads to a tree.
I proof.

1. Given any P = a1; : : : ; an�2, we can find b1; : : : ; bn�1 using the
reconstruction rule.

2. a and b define a graph where we start from a single node n and add
node bn�1 to an�1, and so on.

3. the resulting graph is a tree since we added one node and one edge
connecting this node to the tree from previous step.

4. Hence, every code P maps to a tree.

this prove the following:
Cayley’s Theorem. The number of labeled trees with n vertices is
nn�2

Shortest paths 3-12



other applications of Prüfer code

F what does the number of appearance of a label in a1; : : : ; an�1 mean?
F node i with degree di appears exactly (di � 1) times

F given a degree sequence d1; d2; : : : ; dn�1; dn such thatPn
i=1 di = 2(n � 1), what is the number of trees such that degree of

node i is exactly di?�
n � 2

d1 � 1; : : : ; dn � 1

�
=

(n � 2)!
(d1 � 1)! � � � (dn � 1)!

F one can generate uniformly random Prüfer code and convert it to a tree
to generate a labelled tree uniformly at random

Shortest paths 3-13



Graph properties
connectivity

the vertex cut of an undirected graph G for two distinct nodes i and
j is the minimum number of nodes whose removal disconnects i and j

the edge cut of an undirected graph G for two distinct nodes i and j
is the minimum number of edges whose removal disconnects i from j

I the vertex connectivity of an undirected graph G is the size of the
minimal vertex cut in G

(Menger’s theorem) the size of the minimum vertex cut in an
undirected graph G between two distinct nodes i and j is equal to the
maximum number of pairwise vertex-independent paths from i to j

I the edge connectivity of an undirected graph G is the size of the
minimal edge cut in G

(Menger’s theorem) the size of the minimum edge cut in an undirected
graph G between two distinct nodes i and j is equal to the maximum
number of pairwise edge-independent paths from i to j (proof is left as
a homework)

vertex connectivity � edge connectivity � minimum degree
Shortest paths 3-14



adjacency matrix
Define an adjacency matrix A 2 RjV j�jV j of an undirected graph
G = (V ;E)

Aij =

�
1 (i ; j ) 2 E
0 (i ; j ) =2 E

properties of the adjacency matrix
F let d = A1, where 1 = [1; 1; : : : ; 1] is the all-ones vector

then di is the degree of node i
F 1TA1 =

P
i;j Aij = 2jE j, since we are counting each edge twice

F from the above two equations, we get thatX
i

di = 2jE j

let B = Ak , what does Bij mean?

Shortest paths 3-15



incidence matrix
Define an all-vertex incidence matrix A 2 RjV j�jE j of an undirected
graph G = (V ;E)

Aij =

�
1 if i is one end of the edge ej

0 otherwise

Define an all-vertex incidence matrix A 2 RjV j�jE j of a directed graph
G = (V ;E)

Aij =

(
1 if i is the initial node of the edge ej

�1 i is the final node of the edge ej

0 otherwise

F since every column of an all-vertex incidence matrix contains exactly
two non-zero entries, we can remove a row from the matrix and still
have sufficient information to define the graph

F the incidence matrix of a graph is defines by removing a row from the
all-vertex incidence matrix (notice it is not unique)

Shortest paths 3-16



Homework 3
Problem 1. (MATLAB exercise)

I We want to write a MATLAB code for computing the minimum
spanning tree given a weights adjacency matrix of an undirected graph.
We will implement Kruskal’s algorithm and verify it on the following
graph. Download two files mst.m and existscycle.m from course
website. exists.m contains a function that takes as input an
adjacency matrix and outputs 1 if there is a cycle and 0 if there is no
cycle. mst.m is the main algorithm, with missing parts that you need to
fill in. In the code provided, A0 is the input weighted adjacency matrix.
MST is the adjacency matrix of the minimum spanning tree that we
recursively grow using Kruskal’s algorithm. A is the residual graph that
starts as A0 and erases any edge that has been included in MST or
any edge that creates cycles when augmented to current MST.
At each recursion, we compute a candidate edge candidate by
choosing the minimum weight edge from A. Then, we want to created
an adjacency matrix augmentT that adds candidate to current MST,
and check if there is a cycle in the augmented tree. If there is a cycle,
we erase candidate from A, since we will never use it in our MST. If
there is no cycle, we add candidate to MST and remove candidate
from A. We continue until we have found n � 1 edges in our MST.

Shortest paths 3-17



Homework 3 problem 1 continued

1

2

3

4

5

6

7

8

9

10

11

12

1

9

4

4

5

3

7

6

5

3

6

2

1

7

2

1

2

(a) Fill in the missing parts in mst.m.
(b) Output the edges in MST and also the weights, for example

(1; 2); 1

(1; 4); 4

.

.

.

You do not need to sort the edges in any particular order. Print out
your source code and your output of part (b) and submit as a solution
to this problem.

Shortest paths 3-18



Homework 3
Problem 2.

We consider a directed graph with n nodes. The graph is specified by
its weighted adjacency matrix A 2 Rn�n , defined as

Aij =

�
wij if there is an edge from node i to node j

0 otherwise.

Note that the edges are oriented, i.e., A34 = w34 means that there is
an edge from node 3 to node 4 with weight w34. For simplicity we do
not allow self-loops, i.e., Aii = 0, for all i 2 f1; : : : ;ng. A simple
illustration of this notation is shown below:

2 3 4

1

2

The weighted adjacency matrix for this example is

A =

2
664

0 2 0 0
0 0 3 0
0 4 0 1
2 0 0 0

3
775

Shortest paths 3-19



Homework 3 problem 2 continued

The rest of this problem concerns a specific graph, given in the file
directedgraph.m on the course web site. For each of the following
questions, you must give the answer explicitly. you must also explain
clearly how you arrived at your answer.

We provide an algorithm for computing the shortest path from a
specified source s to all other nodes in the graph in the file
shortest.m. To answer the following questions, use this algorithm as
a starting point and modify it as necessary.
(a) What is the length of a shortest path from node 1 to node 18?
(b) What is the length of a shortest path from node 1 to node 18, that

does pass through node 19? (you can travel the same edge twice if you
need to)

(c) What is the length of a shortest path from node 1 to node 18, that
does not pass through node 9?

(d) What is the length of a shortest path from node 1 to node 18, that
does pass through edge (5,6)?

Print out your source code and your answers to the above questions as
a solution to this problem.

Shortest paths 3-20



Homework 3
Problem 3.

A complete undirected graph is a graph where every node is adjacent to
all the other nodes. Given a labelled complete graph G = (V ;E),
Cayley’s theorem provides the number of spanning trees on this
complete graph with n nodes, which is nn�2.

Consider a labelled complete bipartite graph G = (A;B ;E) where a
node in A is adjacent to all the nodes in B but no nodes in A. Also, a
node in B is adjacent to all nodes in A but no nodes in B . We label
A = f1; : : : ; jAjg and B = fjAj+ 1; : : : ; jAj+ jB jg.

In this problem, we want to count the number of spanning trees on this
labelled complete bipartite graph G by counting the number of allowed
Prüfer codes.

Notice that not all Prüfer codes are allowed in this case, since some
Prüser codes generate trees that are not allowed, i.e. violate the
bipartite graph assumption by connecting two nodes in A or two nodes
in B . We claim that there is a one-to-one correspondence between a
valid bipartite tree and the following bipartite Prüfer code.

Shortest paths 3-21



Homework 3
Problem 3. (continued)

to build a bipartite Prüfer code (a ; c) of a tree T (A;B ;E) we use the
following iterative procedure to generate two sequences a and c of
lengths jAj � 1 and jB j � 1 respectively

F input: bipartite tree T
F output: bipartite Prüfer code P = (a1; a2; � � � ; ajAj�1); (c1; � � � ; cjBj�1)
F for t = 1; 2; : : : ;n � 1 do
F Let vertex i be the leaf with smallest label in T at step t , and

vertex j is its parent
F Remove vertex i and edge (i ; j ) from T
F if i 2 A then set at = j and bt = i
F else set ct = j and dt = i
F end for
F return P = (a1; a2; � � � ; ajAj�1); (c1; c2; � � � ; cjBj�1)

(a) Show that ajAj = n .
(b) Explain how to recover the sequence in b = (b1; � � � ; bjAj) and

d = (d1; � � � ; djBj�1) from P .
(c) Show that the reconstructed graph is always a tree satisfying the

bipartite condition.
(d) Show that the total number of labelled trees on a complete bipartite

graph is jAjjBj�1jB jjAj�1.Shortest paths 3-22



Homework 3
Problem 4.

We define the distance between two nodes in a graph G = (V ;E) as
the number of edges in the shortest path between those two vertices. A
vertex in G is central if its greatest distance from any other vertex is as
small as possible. This distance is called radius. The diameter of a
graph is defined as the greatest distance between two nodes in the
graph, that is

radius(G) , min
i2V

max
j2V

d(i ; j )

diameter(G) , max
i ;j2V

d(i ; j )

(a) Prove that for every graph G

radius(G) � diameter(G) � 2 � radius(G)

(b) Prove that a graph G of radius at most k and maximum degree at
most d where d is an integer greater than two, has fewer than

d
d�2 (d � 1)k vertices.

Shortest paths 3-23



Homework 3

Problem 5. (Menger’s theorem)
I An amateur graph theorist, in his scribblings, might invent the

following two definitions of k -edge connectivity. a directed graph G is
k -edge connected if
(i) G remains connected after removing any (k � 1) edges.

OR
(ii) There are at least k edge-disjoint paths between every pair of nodes in

G.

(a) Recall that a directed graph G is connected if and only if for each pair
of nodes i and j there exists a directed path from node i to node j .
And two paths are edge-disjoint if they do not share any edges. It is
clear that if G satisfy definition (ii) then it also satisfies definition (i).
Prove that if G remains connected after removing any (k � 1) edges
then there are at least k edge-disjoint paths between every pair of
nodes in G .

(b) Edge conenctivity �(G) of an undirected graph G = (V ;E) is defined
as the minimum k such that the graph is k -edge conected. Give a
polynomial-time algorithm for computing �(G).

Shortest paths 3-24


