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Spectral methods for network problems

Motivating example:
PageRank by GOOGLE

Problem: given a search query, rank web pages according to how
relevant they are
Idea: random walk on graphs
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Motivating example:
Spectral Graph Partitioning

Problem: given a graph of interactions, cluster the nodes as to group
connected components together
Idea: minimize conductance c(A;B)

minfe(A);e(B)g

where e(A) =
P

i2A
P

j2V eij
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Motivating example:
Spectral Clustering [Tamuz et al. 2011]

Problem: cluster N items in high-dimensional spaces
Idea: use pair-wise similarity graph
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Linear algebra review
Vector space Rn

I closed under addition:
for all x 2 Rn and y 2 Rn , x + y 2 Rn

I closed under scalar multiplication:
for all x 2 Rn and c 2 R, cx 2 Rn

Inner product
hu ; vi ,

X
i

uivi = uTv

Euclidean norm
kuk ,

sX
i

u2
i

Cauchy-Schwarz inequality

jhu ; vij � kuk kvk

cos � =
hu ; vi
kuk kvk
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I Subspace is a subset of a vector space which is itself a vector space
I Matrix A 2 Rn�m

I Range of a matrix is a subspace defined as

fAu ju 2 Rmg

It is a subspace spanned by columns of A
I Rank of a matrix A is the dimension of the range of A
I a set of vectors fv1; : : : ; vkg is independent if and only if any vi

cannot be represented as a linear combination of other vectors, i.e.

a1v1 + a2v2 + � � �+ akvk ) a1 = a2 = � � � = ak = 0

I a set of vectors fv1; : : : ; vkg is a basis for a vector space V if and only
if

F fv1; : : : ; vkg span V , i.e. v = span(fv1; : : : ; vkg); and
F fv1; : : : ; vkg is independent

for any vector space, the number of vectors in the basis is the same as
the rank
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the nullspace of a matrix A 2 Rn�m is defined as

null(A) = fx 2 Rm jAx = 0g

which is the set of vectors orthogonal to all rows in A

fact 1. rank(A) = rank(AT )
fact 2. rank(A) is the maximum number of independent columns (or rows) of

A
fact 3. rank(A) � min(m ;n)
fact 4. rank(A) + dim(null(A)) = m

interpretation: consider y = Ax where we apply matrix A to an input
vector x to get an output vector y

I m is the degrees of freedom in x
I dim(null(A)) is the number of degrees of freedom crushed to zero by

applying A
I rank(A) is the number of degrees of freedom in the output y

fact 5. rank(B)� dim(null(A)) � rank(AB) � min(rank(A); rank(B))

Spectral methods 4-7



a matrix A 2 Rm�n is full rank if and only if rank(A) = min(m ;n)
F even if A and B are full rank, AB might not be full rank (e.g.

low-rank factorization)
F even if AB is full rank, either one of A and B might not be full rank
F if A and B have empty null spaces, then AB has an empty null space

F give a non-zero matrix A such that A2 = 0 is a all-zeros matrix
F if ∠(Ax ; x ) = 0 for all x 2 Rn , i.e. all vectors are eigenvectors, then

what can we say about A?
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Eigenvectors and eigenvalues
I � 2 C is an eigenvalue of A 2 Rn�n if

Av = �v

and any such v is called an eigenvector of A.
I If v is an eigenvector of A, then so is av .
I Even when A is real, eigenvalue � and eigenvector v can be complex
I Rank of A is the number of non-zero eigenvalues

Scaling interpretation (assume � 2 R for now)
I if v is an eigenvector, it is scaled by �: Av = �v .
I if x = c1v1 + c2v2, then Ax = c1�1v1 + c2�2v2.

v

Av

Ax

x
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scaling interpretation
F � > 0: Av point in the same direction as v
F � < 0: Av point in opposite direction as v
F j�j < 1: Av smaller than v
F j�j > 1 Av larger than v

eigenvectors are not unique when multiple eigenvalues have same value�
1 0
0 1

�
;

�
0 1
1 0

�

symmetric matrices have real eigenvalues and eigenvectors

it is not immediately clear why eigenvalues and eigenvectors play
important role in discrete mathematics; eigenvalues have many
equivalent characterizations, and perhaps these equivalent
representations shine a light on why they are significant
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the Rayleigh quotient of a non-zero vector x with respect to a matrix
A is defined as the ratio

xT Ax
xTx

theorem. let v be the one that maximizes the Rayleigh quotient of a
symmetric matrix A. Then v is an eigenvector with the eigenvalue
equal to the Rayleigh quotient, and this eigenvalue is the largest
eigenvalue of A.

proof. we solve the unconstrained maximization by setting the
gradient to zero

@ xTAx
xT x

@x
=

�(xTAx )2x + (xTx )2Ax
(xTx )2

= 0

this gives

Ax =
�xTAx

xTx

�
x

which implies that the maximizer is a eigenvector, and that the
Rayleigh quotient is equal to the largest eigenvalue
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Courant-Fischer theorem. let A be a symmetric matrix with
eigenvalue �1 � �2 � � � � � �n , then

�k = min
H2Rn ;dim(H )=n�k+1

max
x2H

xTAx
xTx

= max
H2Rn ;dim(H )=k

min
x2H

xTAx
xTx

proof. here we only prove the second equation.
F A symmetric matrix has a orthogonal and normalized eigenvectors
fv1; : : : ; vng. Any subspace H that has dimension k has a non-empty
intersection with the subspace spanned by fvk ; : : : ; vng. Let x be a
vector in this subspace such that x =

Pn
i=k �ivi for some scalars �i ’s.

Then,

xTAx
xTx

=

Pn
i=k �

2
i �iPn

i=k �
2
i

� �k

it follows that minx2H
xT Ax
xT x � �k for any k dimensional H and in

particular minx2H
xT Ax
xT x � �k . And we know this can be achieved with

equality by choosing H = span(fv1; : : : ; vkg). This proves that
�k = maxH2Hk minx2H

xT Ax
xT x
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Markov chain (finite state, discrete time, homogeneous)
I discrete time t=1,2,. . .
I n states
I random process Xt takes one of n states
I Xt is conditionally independent of the past give Xt�1
I transition probability Pji = P(Xt+1 = j jXt = i)

p(t + 1) = Pp(t)

I example: random walk on a graph

1 2

3 4

P =

2664
0 1=2 1=2 1=3

1=3 0 0 1=3
1=3 0 0 1=3
1=3 1=2 1=2 0

3775
2664
P(Xt = 1)
P(Xt = 2)
P(Xt = 3)
P(Xt = 4)

3775 =

2664
1
0
0
0

3775 ;
2664

0
1=3
1=3
1=3

3775 ;
2664

1=6 + 1=6 + 1=9
1=9
1=9

1=6 + 1=6

3775 ; � � �
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I conditional probability sums to one:
P

j Pji = 1
I rewrite as [1 1 : : : 1]P = [1 1 : : : 1]

[1 1 1 : : : 1] is a left eigenvector of P with eigenvalue 1.
I there is a corresponding eigenvector with eigenvalue 1. Let’s call it

p = [p1 p2 : : : pn ]T .
p = Pp :

I interpretation. this eigenvector is called stationary distribution of a
Markov chain P .
If p(0) = p, then p(t) = P tp = P t�1(Pp) = pt�1p = p for all t .
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1 2

3 4

P =

26664
0 1=d2 1=d3 1=d4

1=d1 0 0 1=d4
1=d1 0 0 1=d4
1=d1 d2=d2 1=d3 0

37775

example: random walk on an undirected graph
I Pji = 1=di if (i ; j ) 2 E
I sanity check

F is [1 1 � � � 1]P = [1 1 � � � 1]?
F what is the right eigenvector?

I the stationary distribution unique if and only if
F graph is connected and
F graph is aperiodic

proof uses Perron-Frobenius theorem, and we will prove it formally later
in this note
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Perron-Frobenius theorem

We say a matrix or a vector is
I positive if all its entries are positive
I nonnegative is all its entries are nonnegative

we use notation x > y (x � y) to mean x � y is entrywise positive
(nonnegative)
Basic facts

I if A � 0 and z � 0, then Az � 0.
I conversely, if for all z � 0, we have Az � 0, then we can conclude

A � 0.
I in otherwords, matrix multiplication preserves nonnegativity if and only

if the matrix is nonnegative
I if A > 0 and z � 0, z 6= 0, then Ax > 0.
I conversely, if whenever z � 0, z 6= 0, we have Az > 0, then we can

conclude A > 0.
I if x � 0 and x 6= 0, we refer to d = (1=1Tx )x as its distribution or

normalized form.
I di = xi=(

P
j xj ) gives the fraction of the total of x , given by xi .
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Regular nonnegative matrices
I suppose A 2 Rn�n , with A � 0.
I A is called regular if for some k � 1, Ak > 0
I meaning in the example of random walk on graphs

F there is an edge from i to j whenever Aij > 0
F then (Ak )ij > 0 if and only if there is a path of length k from i to j
F A is regular if for some k there is a path of length k from every node

to every other node

examples:

I

�
1 0
0 1

�
and

�
0 1
1 0

�
are not regular.

I

241 1 1
1 0 1
1 1 0

35 is regular.
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Perron-Frobenius theorem
I Assume A is nonnegative and Ak > 0 for some k , then
1. there is an eigenvalue �pf of A that is real and positive, with positive

left and right eigenvectors
2. for any other eigenvalue �, we have j�j < �pf
3. the eigenvalue �pf has multiplicity one
4. no other eigenvector has all positive (moreover non-negative) entries:

they contain at least one negative or non real-valued entry
5. limk!1

Ak

�k
pf

= 1
vTw vwT where v and w are the left and right

eigenvectors corresponding to �pf
proof of 5. We assume A is diagonalizable such that exists invertible
matrix V and a diagonal matrix Λ with A = V ΛV�1

then, Ak

�k
pf

= V ((1=�k
pf )Λk )V�1

since j�i j < �pf , we have limk!1((1=�k
pf )Λk ) = diag([1; 0; 0; : : : ; 0]),

where one of the eigenvalue is �pf that converges to one, and the rest
vanish as k grows
then we know that limk!1

Ak

�k
pf

= cvwT , for some constant c where v

is the first columns of V (and also the right eigenvector corresponding
to �pf ) and w is the first row of V�1 (and also the left eigenvector
corresponding to �pf )
the fact that c = 1

vT w follows from the fact that Akv = �k
pf v for all k
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the eigenvalue �pf is called the Perron-Frobenius (PF) eigenvalue of A

the associated positive (left and right) eigenvectors are called the (left
and right) PF eigenvectors (and are unique, up to a scaling)
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Perron-Frobenius theorem for Markov chains

I Consider a Markov chain X0;X1; : : : ; with states in f1; : : : ;ng.
I Transition matrix P such that

Pij = P(Xt+1 = i jXt = j )

I Let pt be the distribution of Xt , i.e. (pt )i = P(Xt = i), then

pt+1 = Ppt = P tp0

I Recall 1TP = 1T

I So 1T is a left eigenvector with eigenvalue 1, which in fact is the PF
eigenvalue of P
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an aperiodic and irreducible Markov chain has regular transition matrix
F A Markov chain is aperiodic if return to state i can occur at irregular

times, i.e. there exists n such that for all n 0 � n ,

P(xn0 = i jx0 = i) > 0

F A Markov chain is irreducible if there is a non-zero probability of
transitioning (even if it takes more than one step) from any state to
any other state.

I For a Markov chain, the right PF eigenvector is the stationary
distribution

P� = �

theorem. for an aperiodic and irreducible Markov chain, there is a
unique stationary distribution � that satisfy � > 0
proof. there exists an integer k such that Pk has strictly positive
entries if and only if the Markov chain is aperiodic and irreducible. The
stationary distribution of the Markov chain is the unique
Perron-Frobenius eigenvector of Pk .

I Further, �pf = 1 > j�j j imply pt ! � no matter what the initial
distribution p0
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I example 1: if the Markov chain has k disconnected components, then
there are k eigenvalues of the same value �1 = �2 = : : : = �k = 1, and
different stationary distribution depending on the initial position

if each component has transition matrix Pi with stationary distribution
�i , such that

P =

2664
P1 0 � � � 0
0 P2 � � � 0
...

...
. . .

...
0 0 � � � Pk

3775 ; and �i = Pi�i for all i ’s

precisely,
F we know 1TP = 1T , which implies left eigenvector 1 and eigenvalue 1
F therefore, there is a corresponding right eigenvector, we call it

� = [�1; �2; : : : ; �k ]
F then it follows that any vector that can be represented as

�0 = [a1�1; a2�2; : : : ; ak�k ] for any real ai ’s are also eigenvectors with
eigenvalue 1, since

P�0 = [a1P1�1; � � � ; akPk�k ] = [a1�1; � � � ; ak�k ] = �0

F this implies that there are k linearly independent eigenvectors with
eigenvalue 1, since we can choose ai ’s to generate such eigenvectors
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I example 2: a 2-periodic Markov chain has �n = �1, and the stationary
distribution does not exist

the transition matrix has the following structure:

P =

�
0 P1

P2 0

�
; and �1 = P1�2 and �2 = P2�1

such that P� = � for � = [�1; �2]

precisely,
F we know 1TP = 1T , which implies left eigenvector 1 and eigenvalue 1
F therefore, there is a corresponding right eigenvector, we call it

� = [�1; �2]
then �0 = [�1;��2] has the eigenvalue �n = �1 since

P�0 = [�P1�2;P2�1] = [��1; �2] = ��0

F we found two eigenvectors one with eigenvalue 1 and the other with
eigenvalue �1
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rate of convergence to stationary distribution
rate of convergence to stationary distribution depends on the largest
eigenvalue that is not �pf , i.e.

� = maxfj�2j; : : : ; j�n jg

where �i ’s are the eigenvalues of P , and �pf = �1 = 1 (to be discussed
later in this note)

mixing time
the mixing time of the Markov chain is given by

T =
1

log(1=�)

mixing time is roughly the time it takes for the distance to stationary
distribution to drop by a factor of 1=e
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Perron-Frobenius theorem for population model

Population model
I (Xt )i denotes the number of individuals in group i at period t
I groups could be by age, location, health, marital status, etc.
I population dynamics is given by Xt+1 = AXt , with A � 0.
I Aij is the fraction of members of group j that move to group i , or the

number of members in group i created by members of group j (e.g. in
births)

I Aij � 0 means the more we have in group j in a period, the more we
have in group i in next period.

I if
P

i Aij = 1 for j , population is preserved in transitions out of group j
I we can have

P
i Aij > 1, if there are births from group j

I we can have
P

i Aij < 1, if there are deaths from group j
Now suppose A is regular

I PF eigenvector v gives asymptotic population distribution
I PF eigenvalue �pf gives asymptotic growth rate (if > 1) or decay rate

(if < 1)
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Perron-Frobenius theorem for path count
Consider directed graphs on n nodes, with adjacency matrix
A 2 Rn�n

Aij =

(
1 there is an edge from node j to node i
0 otherwise

(Ak )ij is the number of paths from j to i of length k
Now suppose A is regular, then for large k ,

Ak � �k
pf vw

T

I total number of paths of length k : 1TAk1 � �k
pf (1Tw)(1Tv)

I �pf is factor of increase in number of paths when length increases by
ones

I wj =(1Tw): fraction of length k paths that start at j
I vi=(1Tv): fraction of length k paths that end at i
I viwj =(1Tv)(1Tw): fraction of length k paths that start at j end at i
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Proof of Perron-Frobenius theorem for positive matrices

Suppose A > 0, and consider the optimization problem

maximize �

subject to Ax � �x for some x � 0; x 6= 0

note that we can assume 1Tx = 1.
interpretation: with yi = (Ax )i , we can interpret yi=xi as the ‘growth
factor’ for component i
problem above is to find the input distribution that maximizes the
minimum growth factor
let �0 be the optimal value of this problem, and let v be an optimal
point, i.e. v � 0, v 6= 0, and Av � �0v .
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We show that �0 is the PF eigenvalue of A, and v is a PF eigenvector.
First, let’s show Av = �0v . i.e. v is an eigenvector associated with �0
We prove this by contradiction

I Suppose Av 6= �0v
I Then there exists k such that (Av)k > �0vk
I Now let’s look at ṽ = v + �ek
I We’ll show that for small � > 0, we have Aṽ > �0ṽ , which means that

Aṽ � �ṽ for some � > �0
I This contradicts the assumption �0 is the maximizer
I For i 6= k , we have

(Aṽ)i = (Av)i + Aik � > (Av)i � �0vi = �0ṽi

so for any � > 0 we have (Aṽ)i > �0ṽi
I for k -th entry,

(Aṽ)k � �0ṽk = (Av)k + Akk �� �0vk � �0�

= (Av)k +��0vk| {z }
>0

��(�0 �Akk )

since (Av)k � �0vk > 0, we conclude that for some small � > 0,
(Aṽ)k � �0ṽk > 0
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To show that v > 0, suppose that vk = 0
From Av = �0v , we conclude (Av)k = 0, which contradicts Av > 0
(which follows from A > 0, v � 0, v 6= 0)

To show j�j � �0, suppose � 6= �0 is another eigenvalue of A, i.e.,
Az = �z , where z 6= 0. (note that � and z can be complex numbers)

I let the magnitude of a vector jz j denote the vector with jz ji = jzi j (for

zj = aj + bj i we define jzj j =
q

a2
j + b2

j )
I Since A � 0 we have Ajz j � jAz j = j�z j = j�jjz j

F the first inequality follows from
(Ajz j)2i = (

P
j Aij

p
a2

j + b2
j )2 =

P
j ;k AijAik

p
(a2

j + b2
j )(a2

k + b2
k ) �P

j ;k AijAik

p
(ajak + bj bk )2 =

�P
j Aijaj

�2
+
�P

j Aij bj
�2

= jAz j2i
F the last equality follows from jxy j = j(ax + bx i)(ay + by i)j =

j(axay � bxby) + (axby + bxay)i j =
p

(a2
x + b2

x )(a2
y + b2

y ) = jx jjy j
I From the definition of �0 as the maximizer, we conclude that j�j � �0
I To show strict inequality is harder.
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Random walk on a graph
Undirected Graph G = (V ;E)
Markov chain with n = jV j states

Pij = P(Xt+1 = i jXt = j ) =

(
1=dj if (i ; j ) 2 E

0 otherwise

where dj is the degree of node j
Distribution at time t

pt (i) = P(Xt = i) =
X
j

P(Xt = i jXt�1 = j )| {z }
Pij

P(Xt�1 = j )| {z }
pt�1(j )

Matrix form of pt (i) =
P

j Pijpt�1(j )

pt = Ppt�1

Stationary distribution
� = P�

Unique if the random walk is aperiodic and the graph is connected
(Perron-Frobenius Theorem)
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I � is the right Perron-Frobenius eigenvector corresponding to �1 = 1
and the left eigenvector is w = 1

� = P� ; 1T = 1TP

I claim. �i = di=
P

k dk .
I proof. we need to show that di=

P
k dk =

P
j Pij (dj =

P
k dk ) for all i

X
j

Pij�j =
X

j :(i ;j )2E

1
dj

djP
k dk

= di=
X
k

dk = �i

this proves that � = P� for the choice of �i = di=
P

k dk and
therefore this is a stationary distribution
by Perron-Frobenius theorem, it is unique if the Markov chain is
aperiodic and the graph is connected
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claim. P = AD�1 is diagonalizable
proof. define a symmetric matrix M = D�1=2AD�1=2

P = AD�1 = D1=2(D�1=2AD�1=2)D�1=2 = D1=2MD�1=2

since M is symmetries, it is diagonalizable with M = UΛU�1 where
the columns of U are the left eigenvectors and the rows of U�1 are
the right eigenvectors and Λ is a diagonal matrix with eigenvalues in
the diagonals

P = D1=2UΛU�1D�1=2

it follows that P has the same eigenvalues as M , and the left
eigenvectors are the columns of D1=2U and the right eigenvectors are
the rows of U�1D�1=2

among other things, this proves that P is always diagonalizable
in general, reversible Markov chains are diagonalizable

I a Markov chain P with stationary distribution � is reversible if and
only if it satisfies the following detailed balance equation

Pkj�j = Pjk�k

I for a reversible Markov chain P with stationary distribution �,

N = Π�1=2PΠ1=2

is always a symmetric matrix, where Π = diag(�)
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claim. a reversible Markov chain P is diagonalizable
proof. we have for some symmetric matrix N

P = Π1=2NΠ1=2

since N is symmetric, it can be diagonalized such that N = UΛU�1

P = Π1=2UΛU�1Π1=2

P has the same eigenvalues as N , and the above factorization gives a
eigen value decomposition of P
this implies P is diagonalizable
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Rate of convergence
F Let p0 = a1v1 + � � �+ anvn , where vi ’s are eigenvectors of P such that

Pvi = �ivi

pt = P tp0 = P t (a1v1 + � � �+ anvn)

= P t�1
X

k

ak�kvk =
X

k

ak�
t
kvk

= a1�
t
1v1 +

nX
k=2

ak�
t
kvk

= v1 +

nX
k=2

ak�
t
kvk

where �1 = 1. We can also show that a1 = 1, but we omit the proof.
F The error term decays as j�2j

t (where j�2j � � � � � j�n j)
F Mixing time is when the error decays by 1=e
F We want j�2j

t < 1=e , then we need t > 1= log(1=j�2j).

Mixing Time =
1

log(1=j�2j)
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examples on how fast a random walk converges to the stationary
distribution

a complete graph
F P = (1=n)11T ) �2 = 0
F Stationary distribution is � = (1=n)1
F Then, mixing time is 1
F Intuition: When a graph is well connected, it can reach any node fast.

a cycle graph
F �2 ' 1� 1=n2

F Stationary distribution is � = (1=n)1
F Then, mixing time is 1= log(1=(1� 1=n2)) ' n2

F Intuition: Random walk on a line after time t converges in the limit of
n !1 to a Gaussian distribution N (0; t)
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a complete binary tree
F �2 ' 1� 1=n
F Then, mixing time is 1= log(1=(1� 1=n)) ' n
F Intuition: A random walk is twice more likely to move towards a leaf

than towards the root. So it takes about O(n) time to reach the root.

a dumbbell
F The dumbbell graph consists of two complete graphs on n vertices,

joined by one edge.
F A complete graph with n vertices is a graph with n nodes that are

connected to all the other nodes in the graph.
F �2 ' 1� 1=n2

F Then, mixing time is 1= log(1=(1� 1=n2)) ' n2

F Intuition: Consider starting the random walk at some node that is not
attached to the bridge. After one step, the random walk mixes well on
one side of the graph. There is a 1=n chance that the random walk
reaches the node attached to the bridge. And only 1=n chance that it
crosses the bridge. So overall the probability of crossing is about 1=n2.
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exercise: let � be the stationary distribution of a natural random walk
on a directed graph with n nodes. Prove that for every node i ,

�i � n�n

proof:
we know �0is satisfy �i =

P
j2P(i)

1
dj
�j , where P(i) is the set of

predecessors of node i
we also know that dj � n and let �’s be sorted such that
�1 � �2 � : : : � �n

then, �1 =
P

j2P(1)
1
dj
�j �

1
n �2 (when there is a self loop, it only

makes �i larger)
similarly, �1 �

1
n �2 �

�
1
n

�2
�3 � � � � �

�
1
n

�n�1
�n

since �i ’s sum to one, at least one of them has to be larger than 1
n ,

hence �n �
1
n

this finishes the proof
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PageRank by GOOGLE

I Given the directed hyper link graph G and its adjacency matrix A
I Goal: score the pages according to how important it is
I Approach 1: s(i) =

P
j Aij (paper with many citations is important)

I Problem: one can manipulate the score by creating two pages with lots
of links in between

I Solution: s(i) =
P

j
1
dj

Aij s(j )
I Interpretation 1: paper cited by important papers is important
I Interpretation 2: random walk on graphs
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Axiomatic approach to PageRank algorithm
we study an axiomatic approach to PageRank

F L. Page, S. Brin, R. Motwani, T. Winograd, “The PageRank citation
ranking: Bringing order to the web”, 1999

F Altman, Tennenholtz, “Ranking systems: the pagerank axioms”, 2005

PageRank algorithm
F input: a directed graph G = (V ;E), where a directed edge (i ; j )

indicates that a hyperlink (in the context of web pages) or
support/approval/trust (in social contexts)

F output: scores for each node � = (�1; : : : ; �n)
F algorithm:
1. compute the transition matrix of a natural random walk on the directed

graph as
P = ATD�1 ; where

Pij , P(Xt+1 = i jXt = j ) =

�
1

out-degree of node j if (j ; i) 2 E
otherwise

Aij ,

�
1 if (i ; j ) 2 E

otherwise

and D is a diagonal matrix with Dii equal to the out-degree of node i .
2. output the stationary distribution � satisfying � = P�
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an axiomatic approach to ranking algorithms focus on characterizing a
set of axioms that a ranking algorithm of interest must satisfy, and
tries to identify the unique ranking algorithm that satisfies the set of
proposed axioms

Altman and Tennenholtz studied five axioms satisfied by PageRank and
proved that PageRank is the only algorithm satisfying all five axioms

we will first prove that PageRank satisfies all five axioms

axiom 1: isomorphism
F a ranking system satisfies isomorphism if its ranking does not depend

on the name of the nodes
F in particular, if two nodes have the same predecessor and successors,

then their score and ranking must be the same
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axiom 2: vote by committee
F a ranking system satisfies vote by committee if a node can indirectly

vote through a committee which casts the same set of votes as the
original voter and the resulting ranking does not change

F precisely, consider a voter a and its successors S(a) in G
F create a new graph G 0 by adding committee fu1; : : : ;ukg of size k and

removing all the outgoing edges of a and adding edges from a to all
committee and from all committee to all nodes in S(a)

a b

c

a
u2 b

c

u1

uk
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F lemma. PageRank satisfies vote by committee.

consider the random walk P on G = (V ;E) with stationary
distribution � which satisfies the following (P is for the example in the
figure above)

�a =

X
i

Pai�i

�b =
1

da
�a +

X
i 6=a

Pbi�i

�c =
1

da
�a +

X
i 6=a

Pci�i

a b c

P =

24 . . .
.
.
.

.

.

.
.
.
.

� � � 0 0 0
� � � 1=2 0 0
� � � 1=2 0 0

35 a
b
c

we next show that the new random walk P 0 on the new graph
G 0 = (V [ fuigi2[k ];E 0) with added committee has a Perron-Frobenius
eigenvector whose entries corresponding to the nodes in the original
graph does not change.
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consider a new vector v = [� ; 1
k �a ; � � � ;

1
k �a ], and we show that this

new vector is the PF eigenvector of P 0

�a =

X
i

Pai�i

�ui =
1

k
�a

�b =

kX
j=1

1

2
�uj +

X
i2Vnfag

Pbi�i

�c =

kX
j=1

1

2
�uj +

X
i2Vfag

Pci�i

a b c u1 � � � uk

P 0 =

2666664
. . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

� � � 0 0 0 0 � � � 0
� � � 0 0 0 1=2 � � � 1=2
� � � 0 0 0 1=2 � � � 1=2
� � � 1=k 0 0 0 � � � 0

� � �

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

� � � 1=k 0 0 0 � � � 0

3777775

hence, the stationary distribution of P 0 is proportional to v up to a
normalization, and the relative ordering does not change after adding
the committee
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axiom 3: self-edge
F a ranking system satisfies self-edge if adding a self-edge strengthens the

node but does not change the ranking of the rest of the nodes
F the new stationary distribution is �0i = di+1

di
�i and the rest unchanged

�i =
si

di
�i +

X
j2P(i)nfig

Pij�j

and for a j 2 S(i),

�j =
1
di
�i +

X
k2P(j )nfig

Pjk�k

�0i =
1 + si

1 + di
�0i +

X
j2P(i)nfig

Pij�j

and for a j 2 S(i),

�j =
1

1 + di
�0i +

X
k2P(j )nfig

Pjk�k
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axiom 4: collapsing
F a ranking system satisfies collapsing if nodes with the same set of

successors can be merged into a single giant node with the same set of
successors as the original nodes and all the incoming edges of the
original nodes, and the ranking of the nodes that was not merged
remains unchanged

F precisely, in the figure below, ranking of nodes other than a and b
should not be changed after collapsing a and b into a giant node A

a

b

c

d
A

c

d
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on the original graph, the Markov chain P and stationary distribution
�, with two nodes a and b that have the same set of successors of size
k , satisfy

�a =

X
i2S(a)

Pai�i

�b =

X
i2S(b)

Pbi�i

�c =
1

k
(�a + �b ) +

X
i 6=a;b

Pci�i

�d =
1

k
(�a + �b ) +

X
i 6=a;b

Pdi�i

�A =

X
i2S(a)

Pai�i +

X
i2S(b)

Pbi�i

�c =
1

k
�A +

X
i 6=a;b

Pci�i

�d =
1

k
�A +

X
i 6=a;b

Pdi�i

looking at the equation on the right for the stationary distribution on
the new collapsed graph G 0, we see that the Pf eigenvector for the new
P 0 is �0 = [�1 � � � (�a + �b) � � ��n ] where a and b are merged and the
rest of the vector is unchanged
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axiom 5: proxy
a ranking system satisfies proxy if k nodes of equal rank and out-degree
one that voted for k nodes via a proxy can achieve the same result by
voting for one node each

a

gb

c

d

e

a

b

c

d

e

ff

�g = �a + �b + �c = 3�a

�d =
1

3
�g +

X
i =2fa;b;c;gg

Pdi�i

�d = �a +

X
i =2fa;b;c;gg

Pdi�i

theorem. (Altman and Tennenholtz, 2005) ranking system satisfies
axioms 1–5 if and only if it is a PageRank algorithm.
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The Laplacian Matrix
the adjacency matrix A of a graph is natural but not the most useful
eigenvalues and eigenvectors of a matrix is most useful when associated
with the natural operator or the natural quadratic form

the most natural operator associated with an undirected graph is the
transition matrix of a natural random walk on the graph

P = D�1A

where D is a diagonal matrix with the degree of each node in the
diagonal

Dij =

�
di if i = j
0 if i 6= j

where di is the degree of node i , and A is the adjacency matrix

Aij =

�
1 if (i ; j ) 2 E
0 otherwise

the most natural quadratic form associated with an undirected graph is
the Laplacian matrix LG , defined as

LG = D �A
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quadratic form of LG is useful in capturing the structure of the graph:
xTLGx =

X
i

dix 2
i �

X
(i;j )2E

2xixj

=
X

i

X
j :(i;j )2E

x 2
i �

X
(i;j )2E

2xixj

=
X

(i;j )2E

2x 2
i � xixj

=
X

(i;j )2E

x 2
i + x 2

j � xixj

=
X

(i;j )2E

(xi � xj )2

it measures how smooth the function x is: xTLGx small for smooth x

a few properties
F LG is positive semidefinite, i.e. xTLGx � 0 for all x
F 1 is in LG ’s null space, i.e. LG1 = 0, since 1 is the most smooth
F for a set S � V , let x 2 f0; 1gn be the indicator of the set such that

xi = 1 if i 2 S . Then, xTLGx is the cut value jc(S ;S c)j. Precisely,

xTLGx =
1
2

n X
i2S ;j2Sc

12 +
X

i2Sc ;j2S

12
o

= jc(S ;S c)j
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Graph Laplacian for graph visualization
F drawing graphs is assigning coordinates to nodes (xi ; yi )
F we might want to assign coordinates such that connected nodes are

close to each other
F idea: use eigenvectors corresponding to the smallest eigen values (other

than 1, which will give a trivial coordinates of placing all nodes inthe
same place)

F the second smallest eigenvalue and the corresponding eigenvector
minimizes the following

min
kxk=1;x?1

xTLGx = min
kxk=1;x?1

(xi � xj )2

the third smallest eigenvector minimizes the same function subject to
being orthogonal to v1 = 1 and v2

F use v2 and v3 corresponding to �2 and �3, which are the smallest
eigenvalues other than zero
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for weighted graphs with weights wij ’s, we define Laplacian matrix as

LG = D �A

where Dii =
P

k wik and Aij = wij such that

xT LG x =
X

(i ;j )2E

wij (xi � xj )2
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graph partitioning
how well we can separate a subset S from a graph can be represented
by the isoperimetric ratio of S

�(S) ,
jc(S ;S c)j

jS j
and the isoperimetric number of a graph is defined as

�G , min
jS j�n=2

�(S)

theorem the second smallest eigenvalue of the graph Laplaican matrix
lower bounds the isoperimetric number as

1
2
�2(LG) � �G

proof of the lower bound.
consider a vector IS indicating the set S such that

IS =

�
1 if i 2 S
0 otherwise

for a vector x orthogonal to 1, we know that xTLGx � �2xTx .
Consider x = IS � jS j

jV j1 which is orthogonal to 1. We know that

xTLGx = I T
S XIS =

X
(i;j )2E

((IS )i � (IS )j )2 = c(S ;S c)
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also, we know that

xTx = jS j � jS j2=jV j = jS j
�
1�

jS j
jV j

�
this finishes the proof of the lower bound
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Homework 4.

Problem 1.
(a) Suppose that A 2 R7�5 has rank 4, and B 2 R5�7 has rank 3. What

are the possible values of rank(AB)? For each value r that is possible,
give an example, i.e., a specific A and B with the dimensions and ranks
as given above, for which rank(AB) = r . Try to give simple examples,
and explain for each example for each value of r why AB has a rank of
r .

(b) If V is a subspace in Rn , we define V? as the set of vectors
orthogonal to every element in V , i.e.

V? , fx 2 Rn j xTy = 0 for all y 2 V g :

For example if V = span

 "
1
0
0

#
;

"
0
1
0

#!
then V? = span

 "
0
0
1

#!
,

where span(v1; : : : ; vk ) = fx 2 Rn j
Pk

i=1 aivi for a1; : : : ; ak 2 Rg is
the subspace spanned by the set of vectors. Verify that V? is also a
subspace.

Spectral methods 4-54



Homework 4.

Problem 1. (continued)
(c) Orthonormal basis of a subspace V of rank r in Rn is defined as a set

of r vectors fu1; : : : ;urg such that each vector is normalized, i.e.
uT

i ui = 1 and each pair is orthogonal, i.e. uT
i uj = 0 for any i 6= j , and

they span the subspace, i.e. span(u1; : : : ;ur ) = V .
Projection of a vector x onto a subspace V given an orthonormal basis
matrix U = [u1 � � � ur ] is defined by a projection matrix

P , UUT ;

and the projection of a vector x is Px = UUTx . Prove that all
projection matrices satisfy P2 = P and PT = P .

(d) Show every x 2 Rn can be represented as x = v + v? where v 2 V
and v? 2 V?.

(e) Show that dim(V ) + dim(V?) = n .
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Homework 4.

Problem 2.
Consider a tall measurement matrix A 2 Rm�n with m > n . Given a
signal x 2 Rn , the output of the measurement is y = Ax . However,
instead of y itself, we observe a corrupted version of y , which we
denote by z . z and y differ only in one entry. For example, if the 4th
entry is corrupted, then yi = zi for i 6= 4 and y4 6= z4.

Given A and z , we want to figure out which entry in z is the corrupted
one. Use MATLAB to figure out which entry is corrupted, given the
following measurement matrix A and corrupted measurement z in the
file corrupt.m.
To check if a vector v is in a subspace spanned by the columns of V ,
you can use the MATLAB script: rank([ V v ]) == rank(V ), which
returns 1 if and only if v is in the subspace.
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Homework 4.

Problem 3.
I Consider a network of n smartphones that can transmit and receive

radio signals. A smartphone i can choose the transmit power Pi > 0.
When this signal reaches a smartphone j that is different from i , the
received signal power is GjiPi .

I The signal power of i at receiver i is Si = GiiPi .
I Assume all entries of G are positive
I The interference power received at smartphone i caused by interference

from all other signals transmitted from other smartphones is
Ii =

P
k 6=i GikPk .

I Signal to interference ratio (SIR) is

Si

Ii
=

GiiPiP
k 6=i GikPk

I We want to set transmit powers Pi ’s such that the minimum SIR is
maximized
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Homework 4.
Problem 3. (continued.)

I We are going to minimize the maximum interference to signal ratio, i.e.

minimize max
i

(eGP)i

Pi

subject to P > 0

where eGij =

�
Gij =Gii if i 6= j

0 if i = j
I We saw in the proof of Perron-Frobenius theorem that the optimal

solution of the following problem is the PF eigenvalue �pf and the
corresponding eigen vector

maximize �

subject to Ax � �x for some x > 0

I The solution to the above problem is also the solution to the following
problem:

minimize max
i

(Ax )i
xi

subject to x > 0Spectral methods 4-58



Homework 4.

Problem 3. (continued.)
I Then, the solution of minimizing the maximum interference problem

can be solved by computing the PF eigenvector of eG and using it to
assign power Pi ’s.

I It follows that the maximum possible SIR is 1=�pf , and with optimal
power allocation, all SIR’s are the same.

(a) For two matrices G1 and G2 given in the file power.m, use MATLAB
to compute eG1 and eG2. Using the function eig(�), compute the
spectral gap of two matrices eG1 and eG2:

�1( eG1)� �2( eG1)

�1( eG1)

Feel free to use the skeleton given in power.m.
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Homework 4.

Problem 3. (continued.)
(b) Start with two random vectors of dimension 20: x=rand(20,1) and

y=rand(20,1). For each matrices eG1 and eG2, use the following
algorithm to compute the Perron-Frobenius eigen vector and plot the
residual error as a function of the number of iterations.
At each iteration compute x = eG1x and y = eG1y . Compute the
residual error at iteration i : e(i) = norm(x/norm(x) -
y/norm(y)). Plot e(i) as a function of i for i 2 f1; 2; : : : ; 100g for
both eG1 and eG2.

(c) Using the result on the spectral gap, explain why one converges faster
to the Perron-Frobenius eigenvector than the other.
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Homework 4.

Problem 4. For an undirected graph G = (V ;E), let
�1 � �2 � : : : � �n be the eigenvalues of the adjacency matrix A,
where

Ai ;j =

�
1 if (i ; j ) 2 E
0 otherwise

Let dave = 1
n

P
i di be the average degree of the graph and dmax be

the maximum degree.
Prove that

dave � �1 � dmax :
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Homework 4.
Problem 5.

Social balance theory studies relationships between pairs of people in a
group. There are two types of relationships between a pair, positive
and negative. Such relationships are represented using signed
undirected graph G = (V ;E ;S) where V is the set of nodes
representing each person in the group, E is the set of edges
representing interactions between pairs of people, and
S : V �V ! f+1;�1g where Sij 2 f+1;�1g is the type of the
relationship between a pair (i ; j ) 2 E .

+
+

-

-

-
-

-

-

-

a balanced signed graph an unbalanced signed graph

A signed graph is said to be balanced if any cycle in the graph has even
number of negative edges. Prove that a signed graph is balanced if and
only if there exists a partition of the edges into two sets A and B such
that every edge within A are positive edges, every edge within B are
also positive edges, and every edge across A and B are negative edges.
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