
IE 512 Graphs, Networks, and Algorithms

Final

This is a 24-hours take home final exam. Read all the questions before starting to write down a solution
for one of the problems. There are 4 problems, so try to be very efficient in solving and writing the solutions.
Contact swoh@illinois.edu if you have any questions.

Problem 1 (matrix completion) Consider a ±1-vector x ∈ {−1,+1}n and a symmetric rank-one
±1-matrix M = xxT . Some of the entries of the matrix M has been erased and we want to recover those
missing entries. Notice that both x and −x give the same matrix M = xxT = (−x)(−x)T , and therefore
x is not uniquely determined from M . In particular, there is always a correct solution that sets one of the
entries of x to +1, for example we can fix x1 = +1. Let E = {(i, j)| either Mij or Mji is revealed } denote
the set of pairs of indices such that the corresponding entry Mij (or Mji) is revealed. Note that since the
matrix is symmetric, we know that Mij = Mji and we only need one of those two entries. We use ME to
denote the matrix with revealed entries, which we filled in the missing entries with zeros. For example,

x =

1
−1
1
−1

 , M =

1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1

 , ME =

1 0 0 0
0 1 0 1
0 0 1 −1
0 1 −1 1

(a) Consider a greedy algorithm:

– choose an index i ∈ [n] at random

– set xi = +1

– set V = {i}
– for all j ∈ N(V)

let k be an index in V such that Mkj is revealed

set xj = xk ×Mkj

V = V ∪ {j}
– end for

– output M̂ = xxT

where N(V) is defined as a set of indices j such that (i, j) ∈ E for some i ∈ V .

Prove that this greedy algorithm correctly recovers the entries of M for the connected components
of i, that is for the sub-matrix of M corresponding to a connected component of a graph formed by
G = ([n], E) that includes the index (or the node) i. In the example above, the subset of nodes {1}
and {2, 3, 4} each form connected components. If we start the algorithm with i = 1, the algorithm does
not recover any missing entries. If we start the algorithm with i ∈ {2, 3, 4}, the algorithm correctly
recovers the missing entry M23. In particular, if the whole graph is connected, the greedy algorithm
correctly recovers all the entries.

(b) Consider a spectral algorithm that compute the leading eigen vector of ME that corresponds to the
largest eigen value. Let u denote this vector. Then, the spectral algorithm computes

xi = sign(ui) ,

1

and outputs M̂ = xxT . For the parts (b) and (c), suppose that x = 1 which is all ones vector, such
that M = 11T is the all ones matrix. Prove that the non-negative matrix ME is regular if and only if
the graph G = ([n], E) is connected.

(c) Use Perron-Frobenius theorem to prove that if the graph G = (V,E) is connected, then this spectral
algorithm correctly recovers the original matrix M = 11T .

(d) Notice that for general x ∈ {±1}n, which is not all ones, we can write x = D1, where D = diag(x)
is a diagonal matrix with the entries of x in the diagonal. Further, M = D11TD, and DMD = 11T .
Let u be the leading eigen vector of ME and let u0 be the leading eigenvector of (11T)E , which is
all ones matrix that has zeros wherever we have missing entries. Notice that (11T)E = DMED and
D(11T)ED = ME .

Use these relationships to show that u = Du0, and that if the graph is connected then the spectral
method finds the correct solution for general x ∈ {±1}n.

(e) The MATLAB script http://web.engr.illinois.edu/∼swoh/courses/ie512/hw/matcomp.m cre-
ates an n-dimensional ±1-vector x and M = xxT , and erases each entry with probability p ∈ (0, 1).
Complete the function in http://web.engr.illinois.edu/∼swoh/courses/ie512/hw/matrixcompletion.m
that recovers M from a subset of its entries using either the greedy algorithm of (a) or the spectral
algorithm of (b) (or any other approach you want), and plot number of entries of M reconstructed
correctly (averaged over 10 instances) (1

2sum(sum(abs(M − M̂)) as a function of p for values of
p ∈ {0.002, 0.004, 0.006, 0.008, 0.01, 0.015} and n = 1000. Which value of p does the resulting graph
(known as Erdös-Renyi graph) start to get connected? [hint: use eigs(sparse(ME)) to speed up the
spectral method.]

Solution 1

(a) First notice that xxT = (−x)(−x)T and we can set one of the xi’s either +1 or −1 and recover the
whole vector x or −x that fits our choice of xi. Then, by the construction of the algorithm it is
clear that the algorithm recovers all entries of x that is connected to our initial choice i such that the
connected components of x are correctly recovered. The reason is that the algorithm continues until
all connected components of i has been included in V and no more. Also, when it recovers an entry,
the entry is correctly recovered.

(b) If ME is regular, then it means that (ME)k > 0 for some k. In graph terminology, it means that after
k steps we can reach any node from any other node. This implies that the graph is connected.

The same is true that if the graph is then there exists a k such that (ME)k > 0 for the same reason.

(c) If the graph is connected, then ME is regular. Then, by PF theorem, the leading eigenvector of ME

is strictly positive. Hence, sign(ui) = 1, which means that the spectral algorithm correctly recovers all
entries of x.

(d) We first show that u = Du0. By definition,

u0 = arg max
‖x‖=1

xT (11T)Ex , and

u = arg max
‖x‖=1

xTD(11T)EDx .

2

This implies that we can change basis to get

u = Dy, where

y = arg max
‖Dx‖=1

(Dx)TD(11T)ED(Dx)

= arg max
‖Dx‖=1

xT (11T)Ex

= arg max
‖x‖=1

xT (11T)Ex

= u0 .

Since, (u0)i = Diiui, we have sign(ui) = Diisign((u0)i). Hence, whenever sign(u0) = 1, we have
sign(u) = Dsign(u0) = x.

(e)

2 4 6 8 10 12 14 16

x 10−3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 105

3

Problem 2 (maximum bipartite matching) Consider an undirected weighted bipartite graph
G = (U, V,E). The maximum cardinality bipartite matching problem can be formulated as the following
integer programmming:

maximize
∑

(i,j)∈E

xij

subject to
∑

j:(i,j)∈E

xij ≤ 1 , for all i ∈ U

∑
i:(i,j)∈E

xij ≤ 1 , for all j ∈ V

xij ∈ {0, 1} , for all (i, j) ∈ E

(a) Write the LP relaxation of the above IP, and explain why we do not need upper bounds on xij ’s.

We will show that this LP always has an integer optimal solution. Therefore, there is no loss in LP
relaxation: we can (efficiently) solve the LP relaxation to get the optimal solution of the original IP.
We will prove this by showing that, if the LP relaxation of (a) has a non-integral optimal solution,
then we can always find an integral solution with the same value of

∑
(i,j)∈E xij .

(b) Suppose there is an optimal, feasible and non-integral solution x̃. Then, show that you can always find
either

– a cycle of non-integral solution edges; or

– a path of non-integral solution edges whose two end nodes i and j satisfy the constraints with
strict inequality such that

∑
k:(i,k)∈E xik < 1 and

∑
k:(j,k)∈E xjk < 1.

(c) For each of the above cases, find x+ and x− satisfying the following conditions:

– x̃ = 1
2 (x+ + x−);

– both x+ and x− are feasible; and

– either x+ or x− has at least one less non-integral edge than x̃.

Then we can conclude that we can continue the process until all edges are integral to obtain an integer
optimal solution.

Solution 3

(a) if any one of the non-negative Xij is strictly larger than one, then at least one of the constraint is giong
to be violated, assuming that the there is no node with degree zero. Hence, any feasible solution will
satisfy xij ≤ 1 even if it is not explicitly stated.

maximize
∑

(i,j)∈E

xij

subject to
∑

j:(i,j)∈E

xij ≤ 1 , for all i ∈ U

∑
i:(i,j)∈E

xij ≤ 1 , for all j ∈ V

xij ≥ 0 , for all (i, j) ∈ E

4

We will show that this LP always has an integer optimal solution. Therefore, there is no loss in LP
relaxation: we can (efficiently) solve the LP relaxation to get the optimal solution of the original IP.
We will prove this by showing that, if the LP relaxation of (a) has a non-integral optimal solution,
then we can always find an integral solution with the same value of

∑
(i,j)∈E xij .

(b) Suppose there is an optimal, feasible and non-integral solution x̃. Then, we will show that you can
always find either

(1) a cycle of non-integral solution edges; or

(2) a path of non-integral solution edges whose two end nodes i and j satisfy the constraints with
strict inequality such that

∑
k:(i,k)∈E xik < 1 and

∑
k:(j,k)∈E xjk < 1.

Start from an arbitrary node i whose one of the edge x̃ij is fractional. Move to node j and see if it
has any other edge that is fractional (note that it cannot have an edge with value x̃jk = 1 since that
violates one of the constraions. If there is no such edge, then we go back to the original node i. If x̃ij
was the only fractional edge, then the path i− j satisfy (2) since both node i and j have only one edge
with non-zero value and the value is not one. The same is true if the path was longer than two nodes.
If the node has another edge with fractional value, we continue along the path until we come to a node
that has only one fractional edge. This defines a path satisfying (2)

Let’s say all the nodes in our path have at least two fractional valued edges, then we can continue this
search until we come back to the original node i, since the graph is finite and the proacess can only
visit each edge once. In this case we found a cycle satisfying (1).

(c) Let C be the cycle or the path found in the above problem. Define ε = min(i,j)∈C min{|x̃ij |, |1− x̃ij |}
and let x+ = x̃+ εIC and x− = x̃− εIC , where IC ∈ {0,+1,−1}|E| has +1 for the odd edges in C and
−1 for the even edges in C. Notice that both x+ and x− are in [0, 1]|E| and x̃ = (1/2)(x+ + x−), and
all the constraints are satisfied for x+ and x−. Further, be the definition of ε, ar least one of the edges
is integral for either x+ or x−.

5

Problem 3 (minimum vertex cover for bipartite graphs) Consider an undirected weighted
bipartite graph G = (U, V,E) with non-negative weights wij ’s on the edges. This can be formulated minimum
weight vertex cover problem as the following integer programmming:

minimize
∑
i∈U

yi +
∑
j∈V

zj

subject to yi + zj ≥ 1 , for all (i, j) ∈ E
yi, zj ∈ {0, 1} , for all i ∈ U and j ∈ V

(a) Write the LP relaxation of the above IP, and explain why we do not need upper bounds on yi’s and
zj ’s.

We will show that this LP always has an integer optimal solution. Therefore, there is no loss in LP
relaxation: we can (efficiently) solve the LP relaxation to get the optimal solution of the original IP.
We will prove this by showing that, if the LP relaxation of (a) has a non-integral optimal solution,
then we can always find an integral solution with the same value of

∑
i yi +

∑
j zj .

(b) Suppose there is an optimal, feasible and non-integral solution ỹ and z̃. Notice that all entries satisfy
ỹi ≤ 1 and z̃j ≤ 1. Let Q be the set of nodes with fractional (non-integral) values in U and R be the
set of nodes with fractional values in V . Assume without loss of generality that |Q| ≤ |R| (since we
can change the role of Q and R in the other case), and let ε , min{ỹi|i ∈ Q}. Define a new solution
y− from ỹ by subtracting ε for all nodes in Q. Define a new solution z+ from z̃ by adding ε for all
nodes in R. Prove that the new solution y− and z+ is

– feasible;

– satisfy
∑

i∈U y
−
i +

∑
j∈V z

+
j ≤

∑
i ỹi +

∑
j z̃j ; and

– has at least one less non-integral valued node than ỹ and z̃.

[hint: to prove feasibility, divide the constraints into four cases: constraints corresponding to the edges
between Q,R; edges between Q,V \R; edges between U \Q,R; and edges between U \Q,V \R. Then
prove feasibility for each case separately.]

Then we can conclude that we can continue the process until all nodes have integral solution to obtain
an integer optimal solution.

(c) Prove that the LP relaxation of the maximum matching in Problem 2 part (a) is dual of the LP
relaxation of the minimum vertex cover in Problem 3 part (a).

(d) Prove that for bipartite graphs, the cardinality of the minimum cardinality vertex cover is equal to the
cardinality of the maximum cardinality matching.

Solution 3.

(a)

minimize
∑
i∈U

yi +
∑
j∈V

zj

subject to yi + zj ≥ 1 , for all (i, j) ∈ E
yi, zj ≥ 0 , for all i ∈ U and j ∈ V

Since we are minimizing non-negative variables yi’s and zj ’s and we only need the sum to satisfy
yi + zj ≥ 1, this can be always satisfied for either y1 = 1 or zj = 1 and the variables will never be
larger than one at global minimum.

6

(b) We want to show

– feasible;

– satisfy
∑

i∈U y
−
i +

∑
j∈V z

+
j ≤

∑
i ỹi +

∑
j z̃j ; and

– has at least one less non-integral valued node than ỹ and z̃.

To prove feasibility we divide the caonstraints into four cases.

– edges between Q,R: y−i = ỹi − ε and z+j = z̃j + ε, hence feasibility still holds.

– edges between Q,V \R: z+j = z̃j = 1 and the constraint is satisfied regardless of y−i .

– edges between U \Q,R: y−i = ỹi = 1 and the constraint is satisfied regardless of z+j .

– edges between U \Q,V \R: y−i = ỹi and z+j = z̃j , hence feasiliity still holds.

Since the overall change in the objective value is −ε(|Q|− |R|) and we suppose |Q| ≥ |R|, the objective
value decreases as expected.

By definition of ε, U has at least one more integral solution, and the number of integral solution for V
doaes not decrease.

(c) This follows from dual formulation of LP.

(d) Let MinV ertexCoverLP be the otimal value of the LP relaxation of minimum vertex cover problem,
MinV ertexCoverIP be the optimal value of minimum vertex cover problem, MaxMatchingLP be the
optimal value of the LP relaxation of the maximum bipartite matching problem, and MaxMatchingIP
be the optimal value of the maximum bipartite matching problem. Then, we proved in previous
steps that MinV ertexCoverLP = MinV ertexCoverIP and MaxMatchingLP = MaxMatchingIP . It
follows from the strong LP duality theorem that MinV ertexCoverLP = MaxMatchingLP . Hence,
max biaprtite matching is equal to min vertec cover.

7

Problem 4 (minimum/maximum spanning tree)
Download the MATLAB file http://web.engr.illinois.edu/∼swoh/courses/ie512/hw/treeoflife.m,
which has the names of 11 species stored in name and genetic distances between each pair stored in dist. Use
your solution from previous homework on finding the minimum spanning tree to find the minimum spanning
tree in the complete graph of 11 nodes and weights as the genetic distances. Use this to cluster the species
into three disjoint sets C1, C2, and C3 such that the minimum inter-cluster distance is maximized, i.e.

maximize min{D(C1, C2), D(C1, C3), D(C2, C3)}

where D(Ci, Cj) = minu∈Ci,v∈Cj d(u, v), and d(u, v) is as defined in the variable dist. Write the optimal
choice of three sets C1, C2 and C3.

Solution 4. From the lecture notes we know that we need to cluster the set into three sets by first
partitioning into two sets by cutting the edge that has the largest weight in the minimum spanning tree. We
further partition one of the previously divided sets, by again cutting the largest weighted edge in the MST.
By cutting two edges with the largest weight in the MST, we get three disconnected components as follows:
C1 = {Opossum},
C2 = {Gallus},
C3 = {Mouse,Goat,Rat,Bovine, Lemur,Chimpanzee,Rabbit,Gorilla,Human}.

8

