
IE 512 Graphs, Networks, and Algorithms

Homework 1 Solution

Problem 1.1 Consider a graph G = (V,E), where V is the set of vertices each corresponding to an
agent, and we connect to agents with an edge if those two agents know the identity of each other. The leader
wants the message to be passed to everyone, and messages can only be passes between two agents who know
each other. So we need to find a connected subset of edges E′. Among all connected subset of edges E′,
we want one that maximizes the probability that the message is not intercepted. Taking the log of the given
formula, we want to maximize

∑
(i,j)∈E′ log(1− pij). We can find such E′ by finding the minimum spanning

tree on G with weights − log(1− pij).
Also, solving Maximum Spanning Tree problem with weights (1 − pij) also finds the optimal spanning

tree for this problem.

Problem 1.2 On the given graph, consider any path P from node 1 to node 12. the maximum altitude
is the weight of the edge on P that is maximum. Hence, finding a path with minimum maximum altitude is
equivalent as the minimax path problem we studied in class. Realizing this, it is straight forward from
page 1-10 of lecture slides that th solution P is the unique path along the miniumum spanning tree. For the
particlar example graph, a minimax path is P = 1 − 2 − 5 − 8 − 11 − 12 with maximum altitude 5. There
are many solutions with the same maximum altitude 5, for example P = 1− 2− 5− 8− 9− 12.

Problem 1.3

(a) We want to prove that for a cycle C with the maximum weight edge e and for all MST T ,

e /∈ T .

We prove this using proof by contradiction. Suppose that there is a MST T with e ∈ T . We want
to show that T cannot be a minimum spanning tree, and therefore there is a contradiction in our
supposition. Then, it follows that e cannot be inlcuded in any MST.

Consider the cycle C, which includes e. Then there exists an edge e′ in C which is not in T , because
T is a tree and trees do not contain a cycle. Create a new tree T ′ by removing e from T and adding
e′. From the assumption we know that we > we′ . Hence, T ′ has smaller sum of weights compared to
T . This violates the supposition that T is a MST, and this finishes the proof of the desired claim.

(b) We prove this by contradiction. Suppose there are two MSTs T1 and T2 for a given graph G. And
let’s assume G satisfies the assumption that any cut has a unique minimum weighted edge. Then,
Consider an edge e1 = (i, j) which is included in T1 but not in T2. This naturally defines a cut (S, Sc).
Consider breaking the edge e1 = (i, j), then S is the one side of the broken tree connected to node i,
abd Sc is the other side connected to j. Then, there is at least one edge in T2 (and not in e1 crossing
the cut (S, Sc). Let’s call it e2. Let e∗ be the unique edge having minimum weight in the cut (S, Sc).
Since e1 and e2 are diferent edges, at least one of e1 or e2 has to be different from e∗. Then we can
always find a new tree T ∗ that has smaller weight than T1 and T2. This contradicts our supposition
that both T1 and T2 are minimum spanning trees.

Here is how we construct the new tree. If w(e1) > w(e2), then we remove e1 from T1 and add e∗ to
get a new tree T ∗ with smaller weight than T1. If w(e2) > w(e1), then we remove e2 from T2 and add
e∗ to get a new tree T ∗ with smaller weight than T2. Otherwise, if w(e1) = w(e1), then we remove e1
from T1 and add e∗ to get a new tree T ∗ with smaller weight than T1.
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To disprove the converse: “if MST is unique, then every cut has unique minimum weight edge”, we
want an example where there is unique MST but there exists a cut where the minimum weight edge
in that cut is not unique. Consider a triangle with three node {1, 2, 3}, and weights w12 = 1, w23 = 1,
and w31 = 2. Then there is unique MST of {(1, 2), (2, 3)}, but there is a cut ({2}, {1, 3}) where there
is no unique minimum weight edge.

(c) We prove this by contradiction. Suppose there are two MSTs T1 and T2 for a given graph G. And
let’s assume that G satisfies the assumption that any cycle has a unique maximum weighted edge.
Since they are both spanning trees and they are not identical, the union of those two trees has at least
one cycle. Also, there is at least one edge e1 that is included in T1 and not in T2. Also, there is another
edge e2 which is included in T2 and not in T1. Let e∗ be the edge with maximum wight in that cycle.
Since e1 and e2 are not identical, we can always find a new tree T ∗ with weight smaller than T1 and
T2. This contradicts our supposition that both T1 and T2 are minimum spanning trees.

Here is how we construct the new tree. If w(e1) > w(e2), we remove e1 from T1 and add e2 to get a
new tree T ∗ with smaller weight than T1. If w(e2) > w(e1), then we remove e2 from T2 and add e1 to
get a new tree T ∗ with smaller weight than T2. Otherwise, if w(e1) = w(e1), then we remove e∗ from
T1 and add e2 to get a new tree T ∗ with smaller weight than T1.

To disprove the converse: “if MST is unique, then every cycle has unique maximum weight edge”, we
want an example where there is unique MST but there exists a cycle where the maximum weight edge in
that cycle is not unique. Consider a graph with 4 nodes {1, 2, 3, 4}, edges {(1, 2), (2, 3), (3, 4), (4, 1), (2, 4)}
and weights w12 = w23 = w34 = 1 and w14 = w24 = 2. Then there is unique MST of {(1, 2), (2, 3), (3, 4)},
but there is a cycle {(1, 2), (2, 4), (4, 1)} where there is no unique maximum weight edge.

Problem 1.4 Suppose that G is not connected, then we claim that G′ must be connected. If G = (V,E)
is not connected, then exists a partition V = A∪B such that they are disconnected in G. Then, in Ḡ = (V, Ē),
for every node a ∈ A and b ∈ B, (a, b) ∈ Ē. It follows that any pair of nodes with one in A and the other in
B are connected by one hop. Any pair of nodes both in A to B are connected by two hops.

Problem 1.5

(a) For all S ∈ I, we want to show that any subset of S is also in I. In other words we need to show the
following lemma.

lemma. For all connected graphs G′ = (V,E′), if we add an edge to the graph, G′′ = (V,E′ ∪{e}) the
resulting graph is still connected (here E′ denotes E \ S).

This is always true by definition.

(b) For all pair of subsets X,Y ∈ I, such that |X| < |Y |, we want to show that there exists an element
y ∈ Y \X such that X ∪ {y} ∈ I. In other words, we need to show the following lemma.

lemma. For all pairs of connected graphs G′1 = (V,E′1) and G′2 = (V,E′2) such that |E′1| > |E′2|,
there exists an edge (i, j) ∈ E′1 \ E′2 such that when we remove the edge, G′′1 = (V,E′1 \ {(i, j)}) stays
connected.

We can prove this lemma as follows. Since G′1 has more edges than G′2, there exists a cycle C =
{e1, e2, . . . , ek} in G′1 such that C ⊆ E′1 but C * E′2. Then, there exists an edge ei that is in C but not
in E′2. This edge is ei ∈ E′1 \E′2 and when we remove it from the cycle, the graph G′1 stays connected.
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