
IE 512 Graphs, Networks, and Algorithms

Homework 4 Solution

Problem 4.1

(a) In the best case, where the range of B and the null space of A has no intersection, then rank(AB) =
min(rank(A), rank(B)) = 3. In the worst case, where the range of B has the largest overlap with the
null space of A, then rank(AB) = min(rank(A), rank(B)) − dim(null(A)) = 2. Here we used the fact
that dim(null(A)) = 5− rank(A).

We have rank(AB) = 3 for

A =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


and B =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



We have rank(AB) = 2 for

A =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


and B =


0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0



(b) We only need to verify additivity and scaling. For any u, v ∈ V ⊥ and λ1, λ2 ∈ R, it is clear that
λ1u + λ2v ∈ V ⊥. This follows form the fact that if uTx = 0 and vTx = 0 for all x ∈ V , then
(λ1u+ λ2v)Tx = λ1u

Tx+ λ2v
Tx = 0.

(c) P = UUT for some orthonormal matrix U . Then, it follows that P 2 = UUTUUT = UUT = P and
PT = (UUT )T = UUT = P .

(d) Consider the projection onto V and V ⊥ defined as the projection matrices P = UUT and P⊥ =
U⊥(U⊥)T . Here U and U⊥ are orthonormal basis for V and V ⊥ respectively. Note that [UU⊥][UU⊥]T =
I. Then,

x = [UU⊥][UU⊥]Tx = UUTx︸ ︷︷ ︸
=v

+U⊥(U⊥)Tx︸ ︷︷ ︸
=v⊥

.

We are left show that v ∈ V and v⊥ ∈ V ⊥. This immediately follows from the fact that U span V and
U⊥ span V ⊥.

(e) Consider an orthonormal basis U of subspace V . Then, we know that rank(U) + dim(null(U)) = n.
The claim follows from the fact that rank(U) = dim(V ) and dim(null(U)) = dim(V ⊥).
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Problem 4.4

Since λ1 = maxx
xTAx
xT x

, we have

dave =
1TA1

1T1
≤ λ1 .

Let v be the eigenvector corresponding to the largest eigenvalue and i be the one with the maximum
value in v such that vi ≥ vj for all j ∈ [n]. Then,

λ1 =
(Av)i
vi

=

∑
j Aijvj

vi

=
∑

j∈N(i)

vj
vi

≤ di

≤ dmax .

Problem 4.5 We first prove the if part: if exists such a two partition then the graph is balanced.
Notice that is such a partition exists, then any cycle in the graph must have even number of crossings between
partitions: if it starts in A a cycle must end in A. This implies that there must be even number of negative
edges in any cycle. This proves the if part.

Next, we prove that if the graph is balanced, then there exists such a two partition as described in the
problem. We construct the partition as follows: choose any node i and let A = {i} and B = ∅. Then we
add all the positive edge neighbors of i in A and negative edge neighbors in B. We continue increasing the
sets until all the nodes in the same connected component as i are included. We repeat for each connected
component. The only time this algorithm creators conflict is when (a) a node already in A is connected to
a node in B by a positive edge; or (b) a node already in A is connected to a node in A by a negative edge.

First, (a) never happens for a balanced graph, since the presence of a positive edge between a node a
in A and node b in B implies that there is a cycle i − · · · − a − b − · · · − i such that there are odd number
of negative edges. This contradicts our assumption that the graph is balanced. Similarly, for (b) this never
happens for a balanced graph. Hence, the above algorithm always finds a two partition for a balanced graph.
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