$$
\text { IE } 512 \text { Graphs, Networks, and Algorithms }
$$

Homework 6 Solution

Solution 6.1

(a) Let $x_{i} \in\{0,1\}$ be whether an actor i is in the cast or not, and y_{j} be whether an investor j is funding the movie or not. Then, the total profit is $-\sum_{k=1}^{n} s_{i} x_{i}+\sum_{j=1}^{m} p_{j} y_{j}$. And we need to make sure that if investor j is funding, that all L_{j} actors are casted: $y_{j} \leq \min \left\{x_{i}\right\}_{i \in L_{j}}$. This condition can be turned into $\left|L_{j}\right|$ linear inequalities as follows.

$$
\begin{array}{cl}
\text { maximize } & -\sum_{i=1}^{n} s_{i} x_{i}+\sum_{j=1}^{m} p_{j} y_{j} \\
\text { subject to } & \text { for all } j, y_{j} \leq x_{i}, \forall i \in L_{j} \\
& x_{i} \in\{0,1\}, \forall i \\
& y_{j} \in\{0,1\}, \forall j
\end{array}
$$

(b)

$$
\begin{array}{ll}
\text { maximize } & -\sum_{i=1}^{n} s_{i} x_{i}+\sum_{j=1}^{m} p_{j} y_{j} \\
\text { subject to } & \text { for all } j, y_{j} \leq x_{i}, \forall i \in L_{j} \\
& 0 \leq x_{i} \leq 1, \forall i \\
& 0 \leq y_{j} \leq 1, \quad \forall j
\end{array}
$$

(c) Let $p^{*}=\left(x^{*}, y^{*}\right)$ be the optimal solution to the LP relaxation and define c properly such that $c^{T} p$ is the objective function for $p=(x, y)$. For proof by contradiction, suppose that p^{*} has fractional entries, and let A be the value of the largest fractional entry of p^{*}. Define two vectors p_{0} and p_{2} as follows. p_{0} is the vector you get by setting all fractional entries of p^{*} to zero. p_{2} is the vector you get by multiplying all fractional entries of p^{*} by $1 / A$.
By construction, p_{0} is still feasible, since if there was a fractional x_{i}^{*}, then all the corresponding j 's such that $i \in L_{j}$ should have y_{j} equal to zero or fractional value. Similarly, p_{2} is still feasible. Let $q=p^{*}-p_{0}$. Then,

$$
\begin{aligned}
& p_{0}=p^{*}-q \\
& p_{2}=p^{*}+\left(\frac{1}{A}-1\right) q
\end{aligned}
$$

Now we show the contradiction to the supposition that p^{*} is the optimal solution. If $c^{T} q$ is positive, then $c^{T} p_{2}>c^{T} p^{*}$. Hence, p^{*} cannot be an optimal solution. If $c^{T} q$ is negative, then $c^{T} p_{0}>c^{T} p^{*}$. Hence, p^{*} cannot be an optimal solution. If $c^{T} q$ is zero, then $c^{T} p_{0}=c^{T} p^{*}$. Hence, there exists an optimal integral solution p_{0}.
(d)

$$
\begin{array}{ll}
\text { minimize } & \sum_{i=1}^{n} u_{i}+\sum_{j=1}^{m} v_{j} \\
\text { subject to } & u_{i}-\sum_{j: i \in L_{j}} z_{i j} \geq-s_{i} \\
& v_{j}+\sum_{i \in L_{j}} z_{i j} \geq p_{j} \\
& 0 \leq z_{i j}, \quad \forall j, \forall i \in L_{j} \\
& 0 \leq u_{i}, \forall i \\
& 0 \leq v_{j}, \quad \forall j
\end{array}
$$

Solution 6.2 Given a primal LP

$$
\begin{aligned}
\operatorname{maximize} & a_{1} z_{1}+\cdots+a_{n} z_{n} \\
\text { subject to } & D_{i 1} z_{1}+\cdots+D_{i n} z_{n} \leq d_{i}, \quad \forall i \in I \\
& D_{j 1} z_{1}+\cdots+D_{j n} z_{n}=d_{j}, \quad \forall j \in E \\
& z_{k} \geq 0, \quad \forall k \in N
\end{aligned}
$$

(a) Change the equality constraints into inequality constraints:

$$
\begin{aligned}
\operatorname{maximize} & a_{1} z_{1}+\cdots+a_{n} z_{n} \\
\text { subject to } & D_{i 1} z_{1}+\cdots+D_{i n} z_{n} \leq d_{i}, \quad \forall i \in I \\
& D_{j 1} z_{1}+\cdots+D_{j n} z_{n} \leq d_{j}, \quad \forall j \in E \\
& -D_{j 1} z_{1}-\cdots-D_{j n} z_{n} \leq-d_{j}, \quad \forall j \in E \\
& z_{k} \geq 0, \quad \forall k \in N
\end{aligned}
$$

Split variables without non-negativity constraints into sum of two variables:

$$
\begin{array}{ll}
\text { maximize } & \sum_{k \in N} a_{k} z_{k}+\sum_{k \notin N} a_{k}\left(z_{k}^{+}-z_{k}^{-}\right) \\
\text {subject to } & \sum_{k \in N} D_{i k} z_{k}+\sum_{k \notin N} D_{i k}\left(z_{k}^{+}-z_{k}^{-}\right) \leq d_{i}, \quad \forall i \in I \\
& \sum_{k \in N} D_{j k} z_{k}+\sum_{k \notin N} D_{j k}\left(z_{k}^{+}-z_{k}^{-}\right) \leq d_{j}, \quad \forall j \in E \\
& -\sum_{k \in N} D_{j k} z_{k}-\sum_{k \notin N} D_{j k}\left(z_{k}^{+}-z_{k}^{-}\right) \leq-d_{j}, \quad \forall j \in E \\
& z_{k} \geq 0, \quad \forall k \in N \\
& z_{k}^{+}, z_{k}^{-} \geq 0, \quad \forall k \notin N
\end{array}
$$

(b) Write the dual LP with variables $\left\{w_{j}\right\}_{w \in I},\left\{w_{j}^{+}\right\}_{j \in E},\left\{w_{j}^{-}\right\}_{j \in E}$:

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{k \in I} d_{k} w_{k}+\sum_{k \in E} d_{k}\left(w_{k}^{+}-w_{k}^{-}\right) \\
\text {subject to } & \sum_{k \in I} D_{k i} w_{k}+\sum_{k \in E} D_{k i}\left(w_{k}^{+}-w_{k}^{-}\right) \leq a_{i}, \quad \forall i \in N \\
& \sum_{k \in I} D_{k j} w_{k}+\sum_{k \in E} D_{k j}\left(w_{k}^{+}-w_{k}^{-}\right) \leq a_{j}, \quad \forall j \notin N \\
& -\sum_{k \in I} D_{k j} w_{k}-\sum_{k \in E} D_{k j}\left(w_{k}^{+}-w_{k}^{-}\right) \leq-a_{j}, \quad \forall j \notin N \\
& w_{k} \geq 0, \quad \forall k \in I \\
& w_{k}^{+}, w_{k}^{-} \geq 0, \quad \forall k \in E
\end{array}
$$

(c) By setting $w_{k}^{+}-w_{k}^{-}=w_{k}$, this can be further simplified as:

$$
\begin{array}{cl}
\text { minimize } & \sum_{k \in I} d_{k} w_{k}+\sum_{k \in E} d_{k} w_{k}=\sum_{k} d_{k} w_{k} \\
\text { subject to } & \sum_{k} D_{k i} w_{k} \leq a_{i}, \forall i \in N \\
& \sum_{k} D_{k j} w_{k}=a_{j}, \quad \forall j \notin N \\
& w_{k} \geq 0, \forall k \in I
\end{array}
$$

Solution 6.3

(a)

$$
\begin{array}{cl}
\operatorname{minimize} & \sum_{(i, j) \in E} c_{i j} y_{i j} \\
\text { subject to } & y_{i j}-\left(x_{j}-x_{i}\right) \geq 0, \forall(i, j) \in E \text { and } i \neq s, j \neq t \\
& y_{s j}-x_{j} \geq 1, \forall(s, j) \in E \\
& y_{i t}+x_{i} \geq 0, \forall(i, t) \in E \\
& y_{i j} \geq 0, \forall(i, j) \in E
\end{array}
$$

(b) Consider any path $p=\left(s, i_{1}\right)\left(i_{1}, i_{2}\right) \cdots\left(i_{k}, t\right)$ from the source to sink. The constraints for the dual problem implies that

$$
\sum_{(i, j) \in p} y_{i j}=y_{s i_{1}}+y_{i_{1} i_{2}}+\cdots+y_{i_{k} t} \geq 1+x_{i_{1}}+\left(x_{i_{2}}-x_{i_{1}}\right)+\cdots+\left(x_{i_{k}}-x_{i_{k-1}}\right)-x_{i_{k}}=1
$$

(c) Consider a cut $\left(S, S^{c}\right)$. For all $i \in S$ set $x_{i}=-1$ and for all $j \in S^{c}$ set $x_{j}=0$. Also let $y_{i j}=1$ if $i \in S$ and $j \in S^{c}$, and $y_{i j}=0$ otherwise. Then, it follows that the value of the objective function is the cut value. Also, this solution obeys the feasibility in the dual constraints.

