
5. Supervised Learning

Classification

Regression

supervised learning 5-1

Supervised Learning
suppose we have a dataset of living areas and prices of houses:

living area (ft2) price (1k$)
2104 400
1600 330
2400 369
1416 232
...

...

Supervised learning:
I given n samples of paired data:

(x (1); y (1)); (x (2); y (2)); � � � ; (x (n); y (n))
I how can we predict the price of a new house with size x ?

supervised learning 5-2

x (i) 2 Rdx is called the “input” variable or input features
y (i) 2 Rdy is called the “output” variable or target variable
the goal is to predict the target variable from input features
training set f(x (i); y (i))gni=1 is the set of data we have to be used to
make the prediction
note that the domain of x and y need not be real-valued vector spaces
formally, our goal is to learn a function h : Rdx ! Rdy such that h(x)
is a good predictor for y

then, what is unsupervised learning?

two types of supervised learning
I regression
I classification

supervised learning 5-3

Linear regression
consider a slightly richer features

living area (ft2) # bedrooms price (1k$)
2104 4 400
1600 3 330
2400 3 369
1416 2 232
...

...
...

x 2 R2 (dx = 2), x1 is the area, x2 is the number of rooms
depending on the problem we need to search for h from different
classes of functions, but for now we focus on linear functions of the
form

h�(x) = �0 + �1x1 + �2x2

�i ’s are the parameters (also called weights) parameterizing the
space of linear functions from Rdx ! R
in general

h�(x) =
dxX
i=0

�ixi = �Tx = h�; x i
supervised learning 5-4

in this class of linear functions, we need to define a measure for which
function is better so that we can find the ebst one
this measure of choice is called cost function, for example

J (�) =
nX

i=1

1
2

(h�(x (i))� y (i))2

which is defined over the given training data
this choice of cost function is called an ordinary least squares, which
can be solved very efficiently
we are searching for a predictor h that best explains the given training
data, and in general we will choose a loss ` : R ! R and define the
cost as

J (�) =
nX

i=1

`(h�(x (i)); y (i))

supervised learning 5-5

learning a predictor is now reduced to a functional estimation problem
of finding the parameter � that minimizes the cost J (�)

we consider the gradient descent approach, which starts with some
initial � and repeatedly updates � as per

�j �j � �
@

@�j
J (�)

the step size � is called the learning rate
this is a popular algorithm for taking the steepest descent direction for
minimizing a function, and in a vector notation

� � � �rJ (�)

this algorithm can be applied as long as we can evaluate the gradient

supervised learning 5-6

to implement the algorithm we need to evaluate the gradient of the
cost function

@

@�j
J (�) =

nX
i=1

@

@�j

1
2

(h�(x (i))� y (i))2

=
nX

i=1

(h�(x (i))� y (i))�
@

@�j
(h�(x (i))� y (i))

=
nX

i=1

(h�(x (i))� y (i))�
@

@�j
(

dxX
j=0

�j x
(i)
j � y (i))

=
nX

i=1

(h�(x (i))� y (i))x (i)
j

supervised learning 5-7

this gives the algorithm
I repeat until convergence
I for all j 2 f0; : : : ; dxg

�j �j � �

nX
i=1

(h�(x (i))� y (i))x (i)
j

If the target y (i) = 1 and the current estimate h�(x (i)) = 0:5 and x (i)
j = 2,

then we would want to increase �j such that h�(x (i)) increases. Gradient
descent turns this intuition into a concrete learning algorithm.

interpretation:
I jointly for all coordinates but for each sample i , the update magnitude

is proportional to the error jh�(x (i))� y(i)j
I if there is a training example with large error, we tend to fit it

aggressively, but if there is a training example with small error then we
do not change the parameter too much

typical gradient descent gets stuck at local minima without further
assumptions (such as convexity), but for our choice of J (�) there is
only one local minima which is the global minima

supervised learning 5-8

what could go wrong with gradient descent?
what could go wrong with quadratic cost J (�)?

supervised learning 5-9

versions of gradient descent methods
I batch gradient descent uses all the training examples to compute the

gradient at every iteration
I stochastic gradient descent uses a sub-samlped training examples of

small cardinality
stochastic gradient descent

I repeat until convergence
I for i = 1 to n
I for all j 2 f0; : : : ; dxg

�j �j � �(h�(x (i))� y(i))x (i)
j

for large-scale real-world problems, stochastic gradient descent is
preferred, mainly due to the empirical success in finding a better
predictor faster
theoretically understanding the power of stochastic descent is an
important problem, and active topic for research

supervised learning 5-10

note that this linear regression was an exercise to learn supervised
learning in general
for solving quadratic cost linear regression problems, there is a much
simpler way
note that the data can be represented as (we let the first entry of the
vectors x ’s to be one to simplify the notation)

X =

2
664
���x (1) ���

���x (2) ���
...

3
775 ; � =

2
64
�0
�1
...

3
75 ;Y =

2
664
y (1)

y (2)

...

3
775

then,

J (�) =
1
2
kX � �Y k2 ; and

supervised learning 5-11

r�J (�) =
1
2
r�hX � �Y ;X � �Y i

=
1
2
r�

�
hX �;X �i � 2h�X ;Y i+ hY ;Y i

�

=
1
2
r�

�
hXTX ; ��T i � 2hXTY ; �i

�

= XTX � �XTY

here we used the fact that

r�hv ; �i = v and r�hM ; ��T i = 2M �

then the global minimum �� can be directly computed by setting the
gradient to zero

�� = (XTX)�1XTY

supervised learning 5-12

the left figure is linear regression of the form h�(x) = �0 + �1x
if we add an extra feature of x 2 such that h�(x) = �0 + �1x + �2x 2,
then we get a better model in the middle
the right figure is using up to degree-5 polynomials h�(x) =

P5
j=0 �j x

j

underfitting (left): hypothesis class cannot capture the structure of
the data
overfitting (right): hypothesis class memorizes the training data and
cannot generalize to new samples
the choice of features is important to avoid under/over fitting

supervised learning 5-13

Logistic regression
consider the task of "spam filter" that determines whether a given
email is a spam or not
we focus on binary classification tasks, where y 2 f0; 1g
such discrete valued output variable is called a label

a logistic function or the sigmoid function is

g(z) =
1

1 + e�z

supervised learning 5-14

logistic regression uses the parametric function class

h�(x) = g(�Tx) =
1

1 + e��T x

other choices of g(�) that is bounded between zero and one can be
used, but logistic function is a natural one (for many reasons)
one property: derivative

g 0(z) =
d
dz

1
1 + e�z

=
1

(1 + e�z)2 e
�z

=
1

1 + e�z

�
1�

1
1 + e�z

�

= g(z)(1� g(z))

we need a proper loss function `(h�(x); y) to define a cost function

supervised learning 5-15

we make this formal by formulating it as a maximum likelihood
problem for a natural probabilistic model:

P(y = 1jx ; �) := h�(x) ; P(y = 0jx ; �) := 1� h�(x)

this can be written as

P(y jx ; �) = h�(x)y(1� h�(x))1�y

assuming n samples are generated i.i.d. the log-likelihood of observing
those samples is

L(�) = log
� nY

i=1

P(y (i)jx (i); �)
�

=
nX

i=1

log
�
h�(x (i))y

(i)
(1� h�(x (i)))1�y(i)

�

=
nX

i=1

�
y (i) log h�(x (i)) + (1� y (i)) log(1� h�(x (i)))

�

supervised learning 5-16

now we can use the standard approach of using gradient ascent to
maximize the log-likelihood

@

@�j
L(�) =

nX
i=1

�
y (i) 1

g(�Tx (i))
� (1� y (i))

1
1� g(�Tx (i))

� @

@�j
g(�Tx (i))

=
nX

i=1

� y (i)

g(�Tx (i))
�

1� y (i)

1� g(�Tx (i))

�
g(�Tx (i))(1� g(�Tx (i)))

@

@�j
�Tx (i)

=
nX

i=1

�
y (i)(1� g(�Tx (i)))� (1� y (i))g(�Tx (i))

�
x (i)
j

= (y � h�(x))xj

which gives

�j �j + �
nX

i=1

(y (i) � h�(x (i)))x (i)
j

If the target y (i) = 1 and the current estimate h�(x (i)) = 0:5 and x (i)
j = 2,

then we would want to increase �j such that h�(x (i)) increases. Gradient
descent turns this intuition into a concrete learning algorithm.

supervised learning 5-17

Softmax regression
consider multi-class classification problem with y 2 f1; : : : ; kg
we use multinomial distribution of the form

P(y = a jx ; �) =
e�T

a x

Pk
b=1 e�T

b x

where the parameters are �a 2 Rdx +1 for a 2 f1; : : : ; kg
in this softmax regression problem, our (vector-valued) function
output is

h�(x) =

2
6666664

e�T1 xPk
b=1 e�Tb x

...
e�Tk xPk
b=1 e�Tb x

3
7777775

estimating the probability that y = a given x and �.
for parameter fitting, we can apply maximum likelihood to define a
cost function and apply gradient ascent

supervised learning 5-18

Battle against overfitting: cross validation and regularization
Consider using a polynomial features of the form

h�(x) = g(�0 + �1x + �2x 2 + � � �+ �kx k)

and wish to decide the optimal k for your problem
consider a case where we have a finite set of models
M = fM1; � � � ;Mdg

for example, Mi could be i -th order polynomial regression model
here is a recipe for making such decisions

I Train each Mi model on training data S and get a predictor hi
I Pick the predictor with the smallest training error

this fails miserably, as in the polynomial example, higher-order
polynomials will generate predictors that fits better and have smaller
training error
however, it leads to over-fitting with high variance
hold-out cross validation works better

supervised learning 5-19

Cross validation
1. randomly split given data S = f(x (i); y (i)))gni=1 into Strain (say 70%)

and SCV
2. train each model Mj on Strain to get a predictor hj for each model

class Mj
3. select the hypothesis hj that has the smallest error ESCV(hj) on the

hold out cross validation set SCV where

ESCV(hj) =
1
jSCVj

X
i2SCV

`(hj (x (i)); y (i))

this ensures we get a better estimate of the generalization error (the
error on the unseen feature x)
typical choice of hold out set size is 30�40%
one problem with hold out cross validation is that we are only testing
models that are trained on 70% of data, which leads to k -fold cross
validation

supervised learning 5-20

k -fold cross validation
1. randomly split the data S = f(x (i); y (i)))gni=1 into K disjoint subsets

of n=K examples each, and call them S1; : : : ;SK
2. For each model Mj

F For each k = 1; : : : ; K
F train the model Mj on S1 [S2cup � � � [Sk�1 [Sk+1 [� � �SK to get a

hypothesis hjk
F test the hypothesis hjk on Sk to get ESk (hjk)

the estimated generalization error for model Mj is the average of
ESk (hjk)’s

3. pick the model with the lowest estimated generalization error, and
retrain the model on the entire S

typical choice of folds is K = 10
when K = n , we are leaving out only one sample per experiment,
which is called leave-one-out cross validation

supervised learning 5-21

Regularization
Parameter fitting using Maximum Likelihood (ML):

�ML = arg max
�

nY
i=1

P(y (i)jx (i); �)

here, we are taking a frequentist view and take the unknown � as a
static or deterministic quantity that does not change
an alternative view of parameter estimation is Bayesian view, where �
is also a random variable with a prior distribution P(�) on � that
expresses our prior beliefs about the parameter
if we have such a prior distribution (and we know it), then the
posterior distribution on the parameter � given the samples
S = f(x (i); y (i))gni=1 is (according to the Bayes rule)

P(�jS) =
P(S j�)P(�)

P(S)

=
P(�)

Qn
i=1 P(y (i)jx (i); �)R

�̃

�
P(�̃)

Qn
i=1 P(y (i)jx (i); �̃)

�
d �̃

supervised learning 5-22

P(�jS) =
P(�)

Qn
i=1 P(y (i)jx (i); �)R

�̃

�
P(�̃)

Qn
i=1 P(y (i)jx (i); �̃)

�
d �̃

P(�) is a given prior distribution, say Gaussian

P(�) =
1

(2�jΣj)1=2 e
�

1
2 (���)T Σ�1(���)

P(y (i)jx (i); �) is whatever model we are using, say logistic regression

P(y jx ; �) =
� 1
1 + e��T x

�y�
1�

1
1 + e��T x

�1�y

if we can compute P(�jS), then we can solve any
prediction/estimation tasks, for example predicting y from x :

P(y jx ;S) =

Z
�
P(y jx ; �)P(�jS)d�

unfortunately, it is computationally very hard to compute P(�jS) as it
involves integration that does not typically give a closed-form solution

supervised learning 5-23

instead, a MAP (maximum a posteriori) estimate of � is commonly
used, given by

�MAP = arg max
�

nY
i=1

P(y (i)jx (i); �)P(�)

the only difference compared to ML estimate is the prior P(�)
in practical applications, a common choice is a Gaussian distribution
� � N (0; �I), which gives

�MAP = arg min
�

nX
i=1

� log P(y (i)jx (i); �) + �k�k2

this encourages small norm solution (compared to ML), which causes
MAP estimate to be less susceptible to overfitting than ML estimates
this type of regularization is also referred to as weight decay

The goal of adding regularizer is to encourage a model that is less sensitive
to how test data differ from training data. For example, if your model is
h�(x) = �Tx , then �j large implies that the model is sensitive to the

variations in xj . A model with small �’s are less sensitive to variations in
the test data.supervised learning 5-24

Logistic regression is a linear classifier

�logistic = arg max
�

L(�)

= arg max
�

nX
i=1

�
y (i) log h�(x (i)) + (1� y (i)) log(1� h�(x (i)))

�

h�(x) = P(y = 1jx) =
1

1 + e��T x

decision boundary:
P(y = 1jx) = P(y = 0jx)
at �Tx = �0 + �1x1 + �2x2 = 0

linear decision boundary at �Tx = 0

supervised learning 5-25

Logistic function as a single layer network

network representation of a function (e.g. logistic regression)
we will use w (instead of �) for the weights as it is more standard in
the neural network community
output of a network o(x)

o(x) = g(wTx) =
1

1 + e�wT x

supervised learning 5-26

Deep Neural Network

under practical scenarios, we want to learn non-linear decision
boundaries
Neural networks are a parametric family of functions
fW (x) : Rd ! Y represented by network of logistic units

supervised learning 5-27

Example: 2-layer neural network trained to distinguish vowel sounds
using 2 formants (features)
a highly non-linear decision boundary can be learned from 2-layer
neural networks

supervised learning 5-28

supervised learning 5-29

Prediction (with an already learned model)

for prediction using (learned) neural network, forward propagation is
used
start from input layer and compute at each subsequent layer the
output of the sigmoid unit
first layer:

o1j (x) = g((w j
1)Tx)

second layer:
o2j (x) = g

�
(w j

2)Tg((w1)Tx)
�

where g((w1)Tx) = [g((w1
1)Tx); � � � ; g((w k

1)Tx)] is a vector of
outputs from 1st layer with k hidden unitssupervised learning 5-30

Training a model from data

regression with neural network, solves for

w� = arg min
w

1
2

nX
i=1

y (i) � hw (x (i))

2

| {z }
J (w)

in the case of a quadratic loss of `(y ; hw (x)) = (1=2)ky � hw (x)k2

note that hw (x) is not a convex function in w
nevertheless the standard approach is to apply gradient descent to
find a good minimum w
backpropagation is used to evaluate the gradient

supervised learning 5-31

some calculus background to derive backpropagation
consider composition of multiple functions

z1 = f1(x) ; z2 = f2(x) and y = g(z1; z2) = g(f1(x); f2(x))

then
@y
@x

=
@y
@z1

@z1

@x
+

@y
@z2

@z2

@x

we want to first compute the derivative w.r.t. the output units
@J (w)
@w2;j1j2

supervised learning 5-32

main idea behind backpropagation is composition
as an example consider the task of computing the gradient of fw (x)
with respect to w for

fw (x) =
1

1 + e�(w0x0+w1x1+w2)

we can represent fw (x) as a network of computation neurons:

green shows forward propagation to compute fw (x)

red shows backpropagation to compute @fw (x)
@w

supervised learning 5-33

backpropagation
I start with 1:00 and propagate backward
1. 1:00 � (�1=x 2) = 1:00 � (�1=1:372) = �0:53
2. �0:53 � (1) = �0:53
3. �0:53 � exp(x) = �0:53 � exp(�1) = �0:195 ' �0:2
4. �0:2 � �1 = 0:2
5. �0:2 � 1 = �0:2
6. @f

@w0
= 0:2 � x0 = �0:2

7. @f
@w1

= 0:2 � x1 = �0:4(' �0:39)

8. @f
@w2

= 0:2

supervised learning 5-34

Output layer

compute @J (w)
@w2;j1j2

for J (w) = 1
2
P

j2

�
y (i)
j2 � o2j2(x (i))

�2
where

o2j2(x (i)) = g(
P

j1 w2;j1j2o1j1(x (i)))

@J (w)

@w2;j1j2
=

@J (w)

@o2j2(x (i))| {z }
(o2j2 (x (i))�y(i)

j2
)

�
@o2j2(x (i))

@w2;j1j2| {z }
o2j2 (x (i))(1�o2j2 (x (i)))o1j1 (x (i))

If the target y (i)
j2 = 1 and o2j2(x (i)) = 0:5 and o1j1(x (i)

j) = 2, then we
would want to increase w2;j1j2 such that o2j2(x (i)) increases.

supervised learning 5-35

the gradient for a single sigmoid unit is

@

@wj
J (w) = �

nX
i=1

(y (i) � hw (x (i)))hw (x (i))(1� hw (x (i)))x (i)
j

derivation:

supervised learning 5-36

Hidden layer

compute @J (w)
@w1;j0j1

for J (w) = 1
2
P

j2

�
y (i)
j2 � o2j2(x (i))

�2
where

o2j2(x (i)) = g(
P

j1 w2;j1j2o1j1(x (i))), and

o1j1(x (i)) = g(
P

j0 w1;j0j1x
(i)
j0)

@J (w)

@w1;j0j1
=
X
j2

@J (w)

@o2j2(x (i))| {z }
(o2j2�y (i)

j2
)

�
@o2j2(x (i))

@o1j1
(x (i))

| {z }
o2j2 (1�o2j2)w2;j1 j2

�
@o1j1(x (i))

@w1;j0j1| {z }
o1j1 (1�o1j1)x (i)

j0

supervised learning 5-37

backpropagation (for a 2-layer network)
I initialize w randomly
I Repeat until convergence
I For each training example (x (i); y (i))
I Compute ŷ (i) o2(x (i))
I For each output unit k

�
(i)
k ŷ (i)

k (1� ŷ (i)
k)(y (i)

k � ŷ (i)
k)

I Compute o(i)
1;j g((w0;j)Tx (i)) for all hidden units j

I For each hidden unit j

�
(i)
j o(i)

1;j (1� o(i)
1;j)wT

1;j �
(i)

I Update each weight as

w2;jk w2;jk + ��
(i)
k o(i)

1;j

w1;`j w1;`j + ��
(i)
j x (i)

`

supervised learning 5-38

backpropagation
I gradient descent on all weights
I easily generalizes to any directed network
I due to non-convexity, will find local minima in general
I depends on the initialization

might require multiple trials
I can include weight momentum

∆w2;jk (t + 1) ��
(i)
k o(i)

1;j + �∆w2;jk (t)

I minimizes error over training examples
might not generalize to test data

I training takes hundreds of thousands of iterations
typical training is very slow

I once trained, testing is fast
I termination criteria: increase in validation set error

supervised learning 5-39

handling overfitting
as number of iterations increases, training error decreases but the
validation error starts to increase
how do we know when to stop?
common techniques: cross-validation, regularization, controlling the
size of the network

supervised learning 5-40

Representation power vs. size and regularization

more layers and more nodes in each layer gives larger representation
power, but can lead to overfitting

larger regularization coefficient gives smoother surface, potentially
avoiding overfitting

supervised learning 5-41

Dropout (yet another regularization technique)

Dropout is another recently introduced (["Dropout: A Simple Way to
Prevent Neural Networks from Overfitting", Srivastava, Hinton,
Krizhevsky, Sutskever, Salakhutdinov, 2014]) technique for
regularization
at training, each "neuron" is active with some probability p, and set
to zero otherwise
at testing, all neurons are active, but scaled by p

supervised learning 5-42

pseudo code
p = 0.5
probability of keeping a unit active.
def train_step(X):

forward pass for example 2-layer neural network
H1 = np.maximum(0, np.dot(W1, X) + b1)
U1 = np.random.rand(*H1.shape) < p
first dropout mask
H1 *= U1
drop
out = np.dot(W2, H1) + b2
backward pass: compute gradients... (not shown)
...

perform parameter update... (not shown)
...

def predict(X):
ensembled forward pass
H1 = np.maximum(0, np.dot(W1, X) + b1) * p
NOTE: scale the activations
out = np.dot(W2, H1) + b2

supervised learning 5-43

50% dropout for hidden layer and 20% dropout for input layer

supervised learning 5-44

Representation power
representation power of neural network

can this be learned?
supervised learning 5-45

supervised learning 5-46

supervised learning 5-47

supervised learning 5-48

face recognition

90% accuracy in learning the head pose

supervised learning 5-49

face recognition

supervised learning 5-50

semantic memory

supervised learning 5-51

semantic memory

supervised learning 5-52

semantic memory

supervised learning 5-53

Deep learning
the goal of deep learning is to capture the hierarchy of features that
capture increasing level of abstraction/summarization

supervised learning 5-54

biological motivation: mammal brain is organized in a deep
architecture
(brief) history of deep learning

I researchers strived to train deep multi-layer neural network for decades
without success

I no successful attempt reported until 2006 (hard to train deep models,
and leads to poorer results)

I exception: convolutional neural networks, Le Cun 1998
I Support Vector Machine (SVM) from 1993 is a shallow architecture,

that works better than any deep architectures in 1990’s
I led to many researchers abandoning deep learning
I breakthrough in 2006

[A Fast Learning Algorithm for Deep Belief Networks, 2006, Hinton,
Osindero, Teh]
[Greedy Layer-wise Training of Deep Networks, 2007, Bengio, Lamblin,
Popovici, Larochelle]

supervised learning 5-55

Convolutional Neural Network
Convolutional Neural Networks are very similar to Neural Networks
the whole network takes as input X and minimizes loss w.r.t. Y
the main difference is that it makes the explicit assumption that the
input is an image, that allows to explicitly impose some structures to
the neural network architecture, such that we reduce the number of
parameters dramatically
regular neural networks do not scale well to full images: CIFAR-10
images are only 32� 32� 3 and a single neuron at the first layer will
have 32� 32� 3 = 3072 weights

this gets worse for moderate size images as 200� 200� 3 = 120; 000
weights are needed for a single neuron

supervised learning 5-56

as the dimension d = 120; 000 is comparable to the sample size
n = 60; 000, i.e. n ' d
and we want to have several neurons and several layers
too many parameters quickly lead to overfitting

main idea: to take advantage of scale, shift, rotation invariance of
images

what is a convolution?

supervised learning 5-57

3D volumes of neurons:
I each layer in a ConvNet is arranged in 3-dimensions: width, height,
depth

I we use depth to refer to the depth of the volume of 3-d neurons in a
single layer (and not the number of layers)

I for example, the CIFAR-10 input image has dimensions 32� 32� 3
(width, height, depth)

I instead of each neuron fully connected to the previous layer, ConvNet
neurons will have connection to a small window of region

I final output layer will have dimension 1� 1� 10 for CIFAR-10

supervised learning 5-58

Each layer of ConvNet transforms input volume to output volume via
a differentiable function
main ingredients are Convolutional Layer, Pooling Layer, and
Fully Connected Layer stacked to build a ConvNet
Example of (simple) ConvNet with [INPUT-CONV-RELU-POOL-FC]

I INPUT [32� 32� 3] for raw pixel RGB values
I CONV layer [32� 32� 12] will output inner product between a small

window of input around each neuron and the weights, and we can
choose to use 12 such filters

I RELU [32� 32� 12] applies entry-wise activation function of
max(0; x) and the dimension does not change

I POOL [16� 16� 12] performs downsampling along the spatial
dimension (width,height)

I FC (Fully Connected) layer [1� 1� 10] is typical neural network layer
for outputing scores for the 10 categories in CIFAR-10

supervised learning 5-59

ConvNets transform an image into 10-dimensional scores
CONV/FC layers have weights to be trained via gradient descent
RELU/POOL layers are fixed functions

supervised learning 5-60

Convolutional layer

example of INPUT[32� 32� 3] and CONV[32� 32� 5] layers
each neuron is connected to a small region spatially (width,height), for
example 3� 3, but fully in depth
multiple neurons (5 in the example) along the depth process the same
region of input (this layer has 5 filters)
the neuron performs standard operation on this region

output = ReLU(
X
j

wj xj)

supervised learning 5-61

intuition
I forward pass: we are sliding 5 filters over the input image across width

and height
I each filter produces a 2-d output
I we will learn the right filters to capture visual features such as edge of

a certain orientation, or a batch of colors (at lower layer) and
honeycomb or wheel patterns (at higher layer)

local connectivity (in spatial dimension) allows us to keep the number
of parameters small, specified by depth, stride, and zero-padding

I depth is a hyper parameter specifying the number of filters
I stride is the rate of moving the filter; if stride is 2 then the filter jumps

2 pixels at a time, resulting in half of the width and height at the
output

I zero-padding pads zeros around the border of the input to preserve
the size at the output

supervised learning 5-62

number of parameters is still large, even with local window
real ConvNets have 11� 11� 3 = 363 weights for 1 neuron and
55� 55� 96 = 290; 400 neurons, totaling 105; 705; 600 parameters in
the first layer
parameter sharing dramatically reduces the number of parameters to
learn
since a good filter at one position in the image is also a good filter at
other locations, we use the same weight for all windows
the total number of parameters is now 96� 11� 11� 3 = 34; 848
this is why the architecture is called a convolutional network

supervised learning 5-63

Pooling layer
pooling progressively reduces the (spatial) size of the network
reduces parameters and computation
for example, a pooling neuron takes input a 2� 2 region and outputs
the MAX of these 4 numbers, moving across the input with a stride of
2
the output width and height is now reduced by half
this is a downsampling with non-linear functions
other functionals include, max pooling, average pooling, and
L2-norm pooling
it should be a function independent of the input permutation

supervised learning 5-64

pooling and weight sharing provides translation invariance

however, there are attempts to get rid of pooling and only use CONV
layers with larger strides
getting rid of pooling is important for training generative models such
as Variational AutoEncoders (VAE) and Generative Adversarial
Networks (GAN)

supervised learning 5-65

LeNet, 1990’s

supervised learning 5-66

82 error made by LeNet

supervised learning 5-67

35 error made by Ciresan et al.
further, most of the time the true answer is in the top-2 prediction
idea: train with transformed samples

supervised learning 5-68

ILSVRC-2012 challenge on ImageNet

28� 28 grey-scale to 256� 256 color
10 classes to 1,000 classes
multiple objects
natural 3-d scene

supervised learning 5-69

winner: AlexNet
Alex Krizhevsky, Ilya Sutskever and Geoff Hinton, 2012
mirror image
subsampling to get 224� 224 patches from 256� 256 images
ReLU activation is faster to train and more expressive
Dropout to regularize

supervised learning 5-70

ZF Net: ILSVRC 2013 winner, Matthew Zeiler and Rob Fergus,
parameter tuning over AlexNet
GoogLeNet: ILSVRC 2014 winner, Szegedy et al., Inception Module,
VGGNet: runner-up in ILSVRC 2014, Karen Simonyan and Andrew
Zisserman, depth helps with 16 CONV/FC layers
ResNet: ILSVRC 2015 winner, Kaiming He et al., skip connections
and a heavy use of batch normalization

supervised learning 5-71

supervised learning 5-72

