5. Supervised Learning

o Classification

@ Regression

supervised learning
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Supervised Learning

@ suppose we have a dataset of living areas and prices of houses:

heusing prices

1000

living area (ft2) | price (1k$)

2104 400 o

1600 330

2400 369 C
1416 232 i B

@ Supervised learning:

» given n samples of paired data:
(:L’(l)’ y(l))’ (z(Q), y(2)), S (x(n)’ y(n))
» how can we predict the price of a new house with size z ?

supervised learning

5000

5-2



z() € R% is called the “input” variable or input features
y() € R% is called the “output” variable or target variable

the goal is to predict the target variable from input features

training set {(z("), y(Y))}7_, is the set of data we have to be used to
make the prediction

note that the domain of £ and y need not be real-valued vector spaces

e formally, our goal is to learn a function h : R% — R% such that h(z)
is a good predictor for y

@ then, what is unsupervised learning?

@ two types of supervised learning

> regression
» classification
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Linear regression

@ consider a slightly richer features
living area (ft?) | # bedrooms | price (1k$)

2104 4 400
1600 3 330
2400 3 369

2 232

1416

e z € R? (d; =2), z1 is the area, 2, is the number of rooms

@ depending on the problem we need to search for h from different
classes of functions, but for now we focus on linear functions of the
form

he(z) = B0 + 0121 + 6227

@ 0;'s are the parameters (also called weights) parameterizing the
space of linear functions from R% — R

@ in general

he(z) = iﬁiaz =07z = (0, z)
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@ in this class of linear functions, we need to define a measure for which
function is better so that we can find the ebst one

@ this measure of choice is called cost function, for example

- 3 3

i:l

|_\

— y()2

which is defined over the given training data

@ this choice of cost function is called an ordinary least squares, which
can be solved very efficiently

@ we are searching for a predictor h that best explains the given training

data, and in general we will choose a loss £ : R — R and define the

cost as
n

J(8) = > t(he(2™),y)

1=1
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@ learning a predictor is now reduced to a functional estimation problem
of finding the parameter 6 that minimizes the cost J(6)

@ we consider the gradient descent approach, which starts with some
initial 8 and repeatedly updates 8 as per

15}

@ the step size a is called the learning rate

@ this is a popular algorithm for taking the steepest descent direction for
minimizing a function, and in a vector notation

9 06— aVJ(6)

@ this algorithm can be applied as long as we can evaluate the gradient
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e to implement the algorithm we need to evaluate the gradient of the
cost function

5570 = 2 g5 (e) - o
= Ll “>)><(;§j(he<m“>)—y“>)
= g:l(he(m(i)) () x —] ZHJ 2l — y)
= > (m(a®) - el
=
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@ this gives the algorithm
» repeat until convergence
> for all 7 € {0,...,d;}

n
6, 8 —ay (he(z) — y)z!?
=1

If the target () = 1 and the current estimate hg(z(")) = 0.5 and xj(i) =2,

then we would want to increase 6; such that hg(z(*)) increases. Gradient
descent turns this intuition into a concrete learning algorithm.

@ interpretation:
» jointly for all coordinates but for each sample 7, the update magnitude
is proportional to the error |hg(z() — y(3)|
» if there is a training example with large error, we tend to fit it
aggressively, but if there is a training example with small error then we
do not change the parameter too much
@ typical gradient descent gets stuck at local minima without further
assumptions (such as convexity), but for our choice of J(8) there is
only one local minima which is the global minima
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housing prices

_— T 1000

B _8
f\\\
price (in$1000)

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
square feet

@ what could go wrong with gradient descent?

e what could go wrong with quadratic cost J(6)?
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@ versions of gradient descent methods

» batch gradient descent uses all the training examples to compute the
gradient at every iteration
» stochastic gradient descent uses a sub-samlped training examples of
small cardinality
@ stochastic gradient descent

» repeat until convergence
> fori=1ton
> forall j €40,...,d;}

6; + 6 — alhy(2) — y(i))z)”

o for large-scale real-world problems, stochastic gradient descent is
preferred, mainly due to the empirical success in finding a better
predictor faster

@ theoretically understanding the power of stochastic descent is an
important problem, and active topic for research
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@ note that this linear regression was an exercise to learn supervised
learning in general

@ for solving quadratic cost linear regression problems, there is a much
simpler way

@ note that the data can be represented as (we let the first entry of the
vectors z's to be one to simplify the notation)

) 6o y(®)

o then, .
J(0) = SIIX0 - Y|J?, and
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1
VeJ(6) = SVe(X6-Y,X6-Y)

= %vg(pce, X0) —2(6X,Y)+ (Y, Y))
_ %Vg((XTX,99T>—2(XTY,9>)
= XTx0-xTy

@ here we used the fact that
Ve(v,8) = v and Vo(M,00T) = 2M6

@ then the global minimum 6* can be directly computed by setting the
gradient to zero
g = (XTXx)'xTy
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o the left figure is linear regression of the form hg(z) = 8y + 61z

e if we add an extra feature of z2 such that hg(z) = 6o + 61 + 6222,
then we get a better model in the middle

@ the right figure is using up to degree-5 polynomials hg(z) = E?:O 6;z’

e underfitting (left): hypothesis class cannot capture the structure of
the data

e overfitting (right): hypothesis class memorizes the training data and
cannot generalize to new samples

@ the choice of features is important to avoid under/over fitting
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Logistic regression
@ consider the task of "spam filter" that determines whether a given
email is a spam or not
e we focus on binary classification tasks, where y € {0, 1}
@ such discrete valued output variable is called a label

@ a logistic function or the sigmoid function is
1

96) = 1=

supervised learning
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o logistic regression uses the parametric function class

1
he(z) = g(8"z) = 14 e

@ other choices of g(-) that is bounded between zero and one can be
used, but logistic function is a natural one (for many reasons)

@ one property: derivative

o 1
El—i—e*z
1

9'(z) =

—z

1 1
- 1+e—z(1_ 1+e—z)
= 9(2)(1 - g(2))

@ we need a proper loss function £(hg(z), y) to define a cost function
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@ we make this formal by formulating it as a maximum likelihood
problem for a natural probabilistic model:

P(y:1|$,9) = he(x), P(y:0|$19) = 1_h'9(z)
@ this can be written as
P(ylz,8) = he(z)¥(1 — he(z))'7¥

@ assuming m samples are generated i.i.d. the log-likelihood of observing
those samples is

1) = 1og(ﬁp(y<i>\m<“,e>)

1=1
_ ilog( (1_ (m(i)))lfy(i))
_ i( ) log h(2) + (1 — ¥V) log(1 — he(®)))
1=1
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@ now we can use the standard approach of using gradient ascent to
maximize the log-likelihood

a i . 1 . 1 Kl .

_ Bt gyt T . (1)

n (1) 1_ 4@ . 8 .

_ Y _ Yy T (V1 — o(8T 2DV C gT (1)
;(g FEF0)) 1—g(9Tm(i)))g(9 z)A—g(67e))5e. 072

—Z( (1 - 9(672)) - (1 - y)(672)) ol
= (v~ @)z

@ which gives

6; — 8 +ay (¥ — ho(a))a)”

1=1

If the target y¥(*) = 1 and the current estimate hg(z(*)) = 0.5 and :cj(i) =2,

then we would want to increase 6; such that hg(z(*)) increases. Gradient
descent turns this intuition into a concrete learning algorithm.
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Softmax regression

e consider multi-class classification problem with y € {1,...,k}
@ we use multinomial distribution of the form
eeg:v
Yho el
where the parameters are 6, € R%*1 for a € {1,...,k}

@ in this softmax regression problem, our (vector-valued) function
output is

P(y = a|z,0) =

T
esl z

Tha e
ho(z) = :

%
Thaeh”

estimating the probability that y = a given z and 6.
o for parameter fitting, we can apply maximum likelihood to define a

cost function and apply gradient ascent

z
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Battle against overfitting: cross validation and regularization

o Consider using a polynomial features of the form

ho(z) = g(fo + b1z + 92:1:2 4+t gkxk)

and wish to decide the optimal k for your problem

consider a case where we have a finite set of models
M:{Ml,"' ,Md}

o for example, M; could be 2-th order polynomial regression model

@ here is a recipe for making such decisions

» Train each M; model on training data S and get a predictor h;
» Pick the predictor with the smallest training error

this fails miserably, as in the polynomial example, higher-order
polynomials will generate predictors that fits better and have smaller
training error

however, it leads to over-fitting with high variance

hold-out cross validation works better
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@ Cross validation
1. randomly split given data S = {(z(*), y(V))}?_, into Sirain (say 70%)
and ch
2. train each model M; on Sirain to get a predictor h; for each model
class M;
3. select the hypothesis h; that has the smallest error Es, (h;) on the
hold out cross validation set Scyv where

1 1 %
Ech(h'j) = |Scv] Z é(h’](z( )): y( ))
1€Scv

@ this ensures we get a better estimate of the generalization error (the
error on the unseen feature )

@ typical choice of hold out set size is 30~40%

@ one problem with hold out cross validation is that we are only testing
models that are trained on 70% of data, which leads to k-fold cross
validation
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o k-fold cross validation

1. randomly split the data S = {(z(),y()))}2_, into K disjoint subsets

of n/K examples each, and call them Sy,..., Sk
2. For each model M;

* Foreachk=1,...,K
* train the model M; on S U Szcup--- U Sk_1 U Sg41 U--- Sk to get a
hypothesis hj

* test the hypothesis hj on Sy to get Es, (hj)
the estimated generalization error for model I; is the average of
EBs,(hjk)'s

3. pick the model with the lowest estimated generalization error, and

retrain the model on the entire S

@ typical choice of folds is K = 10

@ when K = n, we are leaving out only one sample per experiment,
which is called leave-one-out cross validation
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Regularization

e Parameter fitting using Maximum Likelihood (ML):

n
g — P(y®z(1) g
ML argméaxg ("2, 6)
@ here, we are taking a frequentist view and take the unknown 6 as a
static or deterministic quantity that does not change
@ an alternative view of parameter estimation is Bayesian view, where 6
is also a random variable with a prior distribution P(8) on 6 that
expresses our prior beliefs about the parameter
o if we have such a prior distribution (and we know it), then the
posterior distribution on the parameter ¢ given the samples
S = {(z®, y()}2_, is (according to the Bayes rule)
P(S16)P(6)
P(S)
P(6) [T, P(y?]z', 6)

5 (P(6) TTiy Py, 6)) df

P(8S) =
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P(O) 171 P(y™]2), 6)
Js (PO) Ty P(yO2,6)) db

P(8S) =

e P(6) is a given prior distribution, say Gaussian

1 1 Ty—1
— —5(6—p) X7 (6—-p)
P(B) - (27r|z|)1/26 2

° P(y(i)]m(i),e) is whatever model we are using, say logistic regression
1 Y 1 1-y
Pl 0) = (15ooms) (1~ 15poms)
e if we can compute P(6|S), then we can solve any
prediction /estimation tasks, for example predicting y from z:

mmaazépwmmpmﬁw

@ unfortunately, it is computationally very hard to compute P(6|S) as it
involves integration that does not typically give a closed-form solution
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@ instead, a MAP (maximum a posteriori) estimate of 8 is commonly
used, given by

n
Ovar = argmgaxl_[ P(y™|z),6)P(6)
i=1
the only difference compared to ML estimate is the prior P(8)
@ in practical applications, a common choice is a Gaussian distribution
6 ~ N(0, All), which gives

n
fmap = argn{oinz—logp(y(”\w(”,e) + All6)f?
i=1
e this encourages small norm solution (compared to ML), which causes
MAP estimate to be less susceptible to overfitting than ML estimates
@ this type of regularization is also referred to as weight decay

The goal of adding regularizer is to encourage a model that is less sensitive
to how test data differ from training data. For example, if your model is
ho(z) = 6Tz, then 6; large implies that the model is sensitive to the
variations in z;. A model with small 8's are less sensitive to variations in

supervised learning the test data. 504



Logistic regression is a linear classifier

elogistic = argmélx L(B)

= argmaxz ( (2) log hg(z (2) )+ (1 — y(i))log(l _ hg(:c(i)))>

1
14 e 67
linear decision boundary at 67z =0

ho(z) = Py =1lz) =

@ decision boundary:
P(y = 1]z) = P(y = 0|z)
at 8Tz = 0o + 612 + 620 =0
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Logistic function as a single layer network

@ network representation of a function (e.g. logistic regression)

o we will use w (instead of 8) for the weights as it is more standard in
the neural network community

@ output of a network o(z)

1
T
o(z) =g(w z) = 1+ ewlz
Sigmoid Unit
~O
o = o(net) = -
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Deep Neural Network

@ under practical scenarios, we want to learn non-linear decision
boundaries

o Neural networks are a parametric family of functions
fw(z) : R% — Y represented by network of logistic units

0 o Output layer, Y

O Hidden layer, H
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o Example: 2-layer neural network trained to distinguish vowel sounds

using 2 formants (features)

@ a highly non-linear decision boundary can be learned from 2-layer

neural networks

Output

head hid layer A who'd hood
[N A
=
Hidden QB BP0
layer N,

supervised learning

4000

a head
s hid

+ hod

* had

+ hoved

q » heard

@ heed

< hud

» who'd
« hood
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VWTABLHYF oM™
NN NN A X TN
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S OY9 9O WO N0 oS
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NNV o \N® ¢
=T 0 0ND N
NN WMo —a
ooV~
Al MNNT YL~

_p Output layer, Y

Sigmoid Unit

5-29
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Prediction (with an already learned model)

_o Output layer, Y

Sigmoid Unit
HAN

e for prediction using (learned) neural network, forward propagation is

used
@ start from input layer and compute at each subsequent layer the

output of the sigmoid unit
o first layer:

T
o1j(z) = g((wi) z)
@ second layer:
I\ T T
oz(2) = 9( () g((w)T2))

where g((w1)Tz) = [g((w)Tz); ---; g((wf)Tx)] is a vector of

cuperULP e‘g§mf;1ré>m 1st layer with k hidden units 5.30



Training a model from data

@ regression with neural network, solves for

o s} 5[0 e
1=1

J(w)

in the case of a quadratic loss of £(y, hy(z)) = (1/2)]|y — hw(z)]||?
@ note that hy(z) is not a convex function in w

@ nevertheless the standard approach is to apply gradient descent to
find a good minimum w

o backpropagation is used to evaluate the gradient
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@ some calculus background to derive backpropagation

@ consider composition of multiple functions

2 =fi(z), z»=fiz)and y = g(z1, ) = g(fi(z), fo(z))

then
Oy _ 9y on Oy oz

8z 8z 8z Bz Oz

_» Output layer, Y

o
LEAN

Sigmoid Unit

P

Input layer, X
A
@ we (vv:;nt to first compute the derivative w.r.t. the output units
oJ(w
Ow2 51 4y
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@ main idea behind backpropagation is composition
@ as an example consider the task of computing the gradient of f, ()
with respect to w for
1
fu/(z) = 1 + e—(wozotwizi+ws)

@ we can represent f,(z) as a network of computation neurons:

w0 2.00

shows forward propagation to compute f,(z)

red shows backpropagation to compute ngy)
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@ backpropagation

v

start with 1.00 and propagate backward

1. 1.00  (—1/z?) = 1.00 % (—1/1.37%) = —0.53
2. —0.53% (1) = —0.53
3. —0.53 xexp(z) = —0.53 x exp(—1) = —0.195 ~ —0.2
4. —02%-1=0.2
5. —02x1=-0.2
of _ _
6. Fug =0.2%x19=-0.2
7. 2L =0.2x% 2 = —0.4(~ —0.39)
of _
8. 3L =02
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Output layer

Sigmoid Unit

Hidden layer, H

o

* Input layer, X
i . 2
@ compute 661(‘/]2(;'],)2 for J(w) = %ij (y](2) - 02]-2(3:(1))) where
02.72(:13(1)) = g(Z]l W2,51 52 01_7'1(32(7’)))
oIw) _ oJw)  Gon(el)
Oz, 72 802j, (m(i)) Owz 5,
[ . —_————
(02 (2) -y ) 0275 (V) (1= 025 (2) ) 015 (29)
If the target ') =1 and o »(x(i))—o5 d o1, ( ,(i))_z th
g yjz - 272 = U.0 and 01y, :E] = 2, then we
would want to increase ws j,j, such that og;,(z(")) increases.

; el 0 525
supervisea earnmg I9=-3I



Sigmoid Unit

@ the gradient for a single sigmoid unit is

aijjj(w) == zn:(y(i) — ho(2®))hy () (1 - hw(x(i)))wj(i)

1=1

@ derivation:
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Hidden layer

) Hidden layer, H

e compute % for J(w) =

02, () = 9(5; wa s 015

o1, () = g(T;0 wrjoss wj((f

0Iw) _\~ 0Iw) | 0osn(a) gy, Oous(a)
8w1,joj1 P 602]'2(:1:(1)) 301]'1 awl,joji

(02]2,%(21)) 02 (1—02j5 )W 51 5 01, (1—o015 )z](o”
supervised learning
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e backpropagation (for a 2-layer network
» initialize w randomly
» Repeat until convergence

> For each training example (z(*), y()
> Compute §(*) « 02(55(1'))
> For each output unit k&

5 = 50 - 9w - )
Compute 05’3 — g((wo,;)Tz®) for all hidden units j
For each hidden unit j

eg-z) — oif)-(l - o&)-)wfj&(i)

> Update each weight as

W gk < Wk + ozé,(f) OY:])
(7),.(3)

Wye5 $ Wiy —I—Oléj z,

supervised learning 5-38



@ backpropagation
» gradient descent on all weights
easily generalizes to any directed network
due to non-convexity, will find local minima in general
depends on the initialization
might require multiple trials
» can include weight momentum

v

v

v

Awpi(t+1) ¢ adl) 0l) + BAw u(2)

> minimizes error over training examples
might not generalize to test data

» training takes hundreds of thousands of iterations
typical training is very slow

» once trained, testing is fast

> termination criteria: increase in validation set error
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Error

001
0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002

Error versus weight updartes (example 1)

o handling overfitting

as number of iterations increases, training error decreases but the

Number of weight updates

validation error starts to increase

@ how do we know when to stop?

Fo Training ser error 4
Validation set error
[s
I\
L % 4
Www
Q 5000 10000 15000 20000

@ common techniques: cross-validation, regularization, controlling the
size of the network

supervised learning
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Representation power vs. size and regularization

@ more layers and more nodes in each layer gives larger representation
power, but can lead to overfitting

3 hidden neurons 6 hidden neurons 20 hidden neurons

o larger regularization coefficient gives smoother surface, potentially
avoiding overfitting

A =0.001 A=0.01
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Dropout (yet another regularization technique)

a) Standard Neural Net (b) After applying dropout.

e Dropout is another recently introduced (["Dropout: A Simple Way to
Prevent Neural Networks from Overfitting", Srivastava, Hinton,
Krizhevsky, Sutskever, Salakhutdinov, 2014]) technique for
regularization

@ at training, each "neuron" is active with some probability p, and set
to zero otherwise

@ at testing, all neurons are active, but scaled by p
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@ pseudo code

p=20.5

# probability of keeping a unit active.

def train_step(X):
# forward pass for example 2-layer neural network
H1 = np.maximum(0, np.dot(Wl, X) + bl)
Ul = np.random.rand(*H1.shape) < p
# first dropout mask

H1 x= U1

# drop

out = np.dot(W2, H1) + b2

# backward pass: compute gradients... (not shown)
# perform parameter update... (not shown)

def predict(X):
# ensembled forward pass
H1 = np.maximum(0, np.dot(Wl, X) + bl) * p
# NOTE: scale the activations
out = np.dot(W2, H1) + b2

supervised learning 5-43



Test Error

— 15 frames 3 layers 2000 units
—— 15 frames 3 layers 4000 units
— 31 frames 3 layers 4000 units | |
31 frames 4 layers 4000 units

8

Classification Error %
8

finetuning wnAt dropout

finetuning

&

ith dropout

32

0 Sb 160 150 200
Epochs

50% dropout for hidden layer and 20% dropout for input layer
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Representation power

@ representation power of neural network

A target function:

can this be learned?
supervised learning

Input Output
10000000 — 10000000
01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001
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supervised learning

A network:

Learned hidden layer representation:

Input

10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001

B A A

Hidden
Values

.89 .04 .08
.01 .11 .88
.01 .97 .27
99 97 .71
.03 .05 .02
.22 .99 .99
.80 .01 .98
.60 .94 .01

N A AR P A

Output

10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001
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Sum of squared errors for each output unit
0-9 T T T T

0.6 |
0.5
0.4 |
0.3 F

0.1
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Hidden unit encoding for input 01000000

0.9

supervised learning
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o face recognition

left strt rght up

Typical input images

90% accuracy in learning the head pose
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e face recognition

left strt rght up

W,
Learned WW 0
“fim " n i

Typical input images

supervised learning
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@ semantic memory

Semantic Memory Model Based on ANN's
[McClelland & Rogers, Nature 2003]

Representation Hidden

Living thing
PFlant
Animal
Tree
Flower
Bird
Flower
Pine
Oak
Rose
Daisy
Robin
Canary
Sunfish
Salmen

SO [prety

WK

BA . Ry
P S
HAS OQRN

Relation

No hierarchy given.

Train with assertions,
e.g., Can(Canary,Fly)

supervised learning

AN
N

Tal
Living
Green

Grow
Move
Swim
Fly
Sing

Bark
Petals
Wings
Feathers
Scales
Gills
Roots
Skin

Attribute



@ semantic memory

1. Victims of Semantic Dementia progressively lose knowledge of objects

But they lose specific details first, general properties later, suggesting
hierarchical memory organization

Thing
NonLiving I;wg
2. Children appear to learn general N Plant  Animal
categories and properties first, following ~

the same hierarchy, top down’. Fish Bird
ST~

Canary
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@ semantic memory

a Epoch 250 Epoch 750 Epoch 2,500 b - Epoch 500 Epoch 1,500 Epoch 2,500
Pine I . I l
il llifon. Wl . *°
Rﬂsal‘n I.‘_ I_"__ éLS
Dalsy I' . l 5
e
o et Mol ML GEEGEESE EEESEEEY EIENER

— Canary-CAN-Grow

= Pine-HAs-Leaves

T
2,500

500 L&)O I.E:OO 2‘600
Learning epochs
Figure 4| The process of diffe iation of | i The representations are those seen in the feedforward
network model shown in FIG. 3. a | Acquired patterns of activation that represent the eight objects in the training set at three pointsin

the leaming process (epochs 250, 750 and 2,500). Early in leaming, the pattems are undifferentiated; the first difference to appear is
between plants and animals. Later, the patterns show clear differentiation at both the superordinate (plant-animal) and intermediate
(bird-fish/tree—flower) levels. Finally, the individual concepts are differentiated, but the overall hierarchical organization of the similarity
structure remains. b | A standard hi ical clustering i has been used to visualize the similarity structure in the

supervised learning
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Deep learning

@ the goal of deep learning is to capture the hierarchy of features that

capture increasing level of abstraction/summarization

very high level representation:

A

v B

L)

slightly higher level representation

raw input vector representation:

T O

Figure is from Yoshua Bengio

supervised learning
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@ biological motivation: mammal brain is organized in a deep
architecture
o (brief) history of deep learning
» researchers strived to train deep multi-layer neural network for decades
without success
» no successful attempt reported until 2006 (hard to train deep models,
and leads to poorer results)
» exception: convolutional neural networks, Le Cun 1998
» Support Vector Machine (SVM) from 1993 is a shallow architecture,
that works better than any deep architectures in 1990's
» led to many researchers abandoning deep learning
» breakthrough in 2006
[A Fast Learning Algorithm for Deep Belief Networks, 2006, Hinton,
Osindero, Teh]
[Greedy Layer-wise Training of Deep Networks, 2007, Bengio, Lamblin,
Popovici, Larochelle]
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Convolutional Neural Network

e Convolutional Neural Networks are very similar to Neural Networks

@ the whole network takes as input X and minimizes loss w.r.t. Y

@ the main difference is that it makes the explicit assumption that the
input is an image, that allows to explicitly impose some structures to
the neural network architecture, such that we reduce the number of
parameters dramatically

@ regular neural networks do not scale well to full images: CIFAR-10
images are only 32 x 32 x 3 and a single neuron at the first layer will
have 32 x 32 x 3 = 3072 weights

airplane automobile bird deer

H!-ﬁ

@ this gets worse for moderate size images as 200 x 200 x 3 = 120, 000
weights are needed for a single neuron

ﬁﬂ-l

supervised learning 5-56



@ as the dimension d
n = 60,000, i.e. n

@ and we want to have several neurons and several layers

~

120, 000 is comparable to the sample size

d

@ too many parameters quickly lead to overfitting

@ main idea: to take advantage of scale, shift, rotation invariance of

images

o what is a convolution?

Input signal

1

Impulse responce

0.5
0.5
0
-0.5
-500 0 500 0 500
Convolution operation: Flip, Shift, Multiply, and add
1 T T T T
0.5 n
0 rY. | AA
vV VY
0.5 I i | i I i | i
=500 400 =300 =200 «100 0 100 200 300 400 500
Convolution output
10F T T
51 N
0 f f f “AAS i f f f f
o =500+ -400 -300 -200 -100 0 100 200 300 400 500
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@ 3D volumes of neurons:

» each layer in a ConvNet is arranged in 3-dimensions: width, height,

depth

» we use depth to refer to the depth of the volume of 3-d neurons in a
single layer (and not the number of layers)
for example, the CIFAR-10 input image has dimensions 32 x 32 x 3
(width, height, depth)
instead of each neuron fully connected to the previous layer, ConvNet
neurons will have connection to a small window of region
final output layer will have dimension 1 x 1 x 10 for CIFAR-10

v

v

v

&eee ) height
-7

width

o
o
0]
O

input layer
hidden layer 1 hidden layer 2
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@ Each layer of ConvNet transforms input volume to output volume via
a differentiable function

@ main ingredients are Convolutional Layer, Pooling Layer, and
Fully Connected Layer stacked to build a ConvNet
e Example of (simple) ConvNet with [INPUT-CONV-RELU-POOL-FC]
» INPUT [32 x 32 x 3] for raw pixel RGB values
» CONV layer [32 x 32 x 12] will output inner product between a small
window of input around each neuron and the weights, and we can
choose to use 12 such filters
» RELU [32 x 32 x 12] applies entry-wise activation function of
max(0, z) and the dimension does not change
» POOL [16 x 16 x 12] performs downsampling along the spatial
dimension (width,height)
» FC (Fully Connected) layer [1 x 1 x 10] is typical neural network layer
for outputing scores for the 10 categories in CIFAR-10
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@ ConvNets transform an image into 10-dimensional scores

e CONV/FC layers have weights to be trained via gradient descent

e RELU/POOL layers are fixed functions

supervised learning
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Convolutional layer

32 ) wo

axon from a neuron

synapse
wWoXp

L\

000

cell body

Zu“:, +b

activation
function

32

e example of INPUT[32 x 32 x 3] and CONV([32 x 32 x 5] layers
@ each neuron is connected to a small region spatially (width,height), for
example 3 x 3, but fully in depth

e multiple neurons (5 in the example) along the depth process the same
region of input (this layer has 5 filters)
@ the neuron performs standard operation on this region

output = ReLU(Z W; T; )
J
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@ intuition
» forward pass: we are sliding 5 filters over the input image across width
and height
» each filter produces a 2-d output
» we will learn the right filters to capture visual features such as edge of
a certain orientation, or a batch of colors (at lower layer) and
honeycomb or wheel patterns (at higher layer)
@ local connectivity (in spatial dimension) allows us to keep the number
of parameters small, specified by depth, stride, and zero-padding
» depth is a hyper parameter specifying the number of filters
» stride is the rate of moving the filter; if stride is 2 then the filter jumps
2 pixels at a time, resulting in half of the width and height at the
output
» zero-padding pads zeros around the border of the input to preserve
the size at the output

[+ e ][+]
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@ number of parameters is still large, even with local window
real ConvNets have 11 x 11 x 3 = 363 weights for 1 neuron and
55 x 55 x 96 = 290, 400 neurons, totaling 105, 705, 600 parameters in
the first layer

@ parameter sharing dramatically reduces the number of parameters to
learn

@ since a good filter at one position in the image is also a good filter at
other locations, we use the same weight for all windows

@ the total number of parameters is now 96 x 11 x 11 x 3 = 34, 848

@ this is why the architecture is called a convolutional network
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Pooling layer

e pooling progressively reduces the (spatial) size of the network

@ reduces parameters and computation

o for example, a pooling neuron takes input a 2 X 2 region and outputs
the MAX of these 4 numbers, moving across the input with a stride of
2

@ the output width and height is now reduced by half

@ this is a downsampling with non-linear functions

@ other functionals include, max pooling, average pooling, and
L2-norm pooling

@ it should be a function independent of the input permutation

224x224x64

,,,,,,, fibsiised Single depth slice
pool x 1(1]2]4

78
110 314
3 4

max pool with 2x2 filters
and stride 2 6|8

56
‘ G

— M 112
5 - downsampling
112

~—

P —
224 y
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pooling and weight sharing provides translation invariance

however, there are attempts to get rid of pooling and only use CONV
layers with larger strides

getting rid of pooling is important for training generative models such
as Variational AutoEncoders (VAE) and Generative Adversarial
Networks (GAN)
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LeNet, 1990's
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S4: f. maps 16@5x5

C5: layer
120 FBZ layer ?gTPUT

C1; feature maps
INPUT
32x32 6@28x28
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@ 82 error made by LeNet
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@ 35 error made by Ciresan et al.

@ further, most of the time the true answer is in the top-2 prediction

@ idea: train with transformed samples
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ILSVRC-2012 challenge on ImageNet

@ 28 x 28 grey-scale to 256 x 256 color

@ 10 classes to 1,000 classes

o multiple objects

@ natural 3-d scene

bullet train

xluor*

leopard

snow leopard

Egyptian cat

passenger car

subway train

electric locomotive

hand glass
ing pan
thoscope
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winner: AlexNet

mlie

" container ship

motor scooter

Alex Krizhevsky, llya Sutskever and Geoff Hinton, 2012
mirror image
subsampling to get 224 x 224 patches from 256 x 256 images
ReLU activation is faster to train and more expressive
Dropout to regularize

mite container ship motor scooter pard
black widow lifeboat go-kart Jaguar
moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat

= X

7
grille mushroom cherry adagascar cat
vertible agaric dalmatial squi 1 monkey
grille mushroom grape spider monkey
:J pickup jelly fungus elderberry titi
beach wagon gill fungus [ffordshire bullterrier indri
fire engine || dead-man’'s-fingers currant howler monkey
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@ ZF Net: ILSVRC 2013 winner, Matthew Zeiler and Rob Fergus,
parameter tuning over AlexNet

o GoogLeNet: ILSVRC 2014 winner, Szegedy et al., Inception Module,

@ VGGNet: runner-up in ILSVRC 2014, Karen Simonyan and Andrew
Zisserman, depth helps with 16 CONV/FC layers

@ ResNet: ILSVRC 2015 winner, Kaiming He et al., skip connections
and a heavy use of batch normalization
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