
1. Overview

Eulerian cycles

Minimum spanning trees

Overview 1-1

Eulerian cycle
Graph theory

Seven bridges of Königsberg, [Leonhard Euler 1735]
Can you cross all seven bridges exactly once?

1

2

3 4

Graph G = (V ;E)
F V : set of vertices f1; : : : ;n = jV jg
F E : set of edges f(i ; j); : : :g or fe1; e2; : : : ; em=jE jg
F directed edge is an ordered pair such that (i ; j) 6= (j ; i)
F undirected edge is an unordered pair such that (i ; j) = (j ; i)
F multigraph is a graph with multiple edges between a pair of nodes
F loop or a self-loop is an edge between a node and itself
F simple graph is a graph with no loops and no multi-edges

Overview 1-2

1

2

3 4

Representing and storing a Graph G = (V ; E)
I Adjacency matrix
I Incidence matrix
I Edge list

Overview 1-3

Graph terminology
F two nodes are said to be adjacent or neighbors if they are connected by

an edge
F walk: v1v2 � � � vk such that (vi ; vi+1) 2 E
F path: a walk v1v2 � � � vk such that vi 6= vj
F closed walk: a walk such that v1 = vk
F cycle is a closed path
F a graph is connected if there exists a path from any node i to any j
F degree of a node is the number of adjacent nodes

For the seven bridges of Königsberg example,
F Eulerian walk: a walk that includes all the edges exactly once (but we

will also call such a walk a Eulerian path)
F Eulerian cycle: an Eulerian walk that is closed (precisely, it should be

called Eulerian closed walk)

Q1 given a graph, can we decide whether there is an Eulerian cycle or not?

Q2 if there is one, how can we find one efficiently?

Overview 1-4

Theorem. there exists an Eulerian cycle if and only if the graph is
connected and every node has an even degree

I “)00 only if part is easy: it follows from “all closed walks have even
degrees”

I “ (00 if part: a constructive proof due to Fleury, 1883
1. algorithm:

F start at any node
F at each step, choose the next edge in the path to be the one whose

deletion would not disconnect the graph
F if there is no such edge, pick the remaining edge left at current node
F move to the chosen node and delete the edge
F if there is no edge left in the end, the sequence of edges traversed is an

Eulerian cycle
F if there are edges left that cannot be traversed, then the graph has no

Eulerian cycle

fact 0. sum of all the degrees is even, i.e.
P

i2V di = 2jE j

Overview 1-5

2. correctness:
fact 1. if the original graph has all even degrees, then all node degrees remain

even, except for the start node and current node
fact 2. hence, there is always an edge to move to, and the process only fails to

find an Eulerian cycle only if at a certain step all edges of the current
node result in disconnected graph

fact 3. this only happens when current node has degree one, in which case
disconnected part is a single isolated node.
proof of fact 3. We prove by contradiction. Suppose current node has
degree d larger than 2, and removing any of these edges result in a
disconnected graph. Then, the graph looks like a star where removing
the current node results in d disconnected subgraphs. Let
G1 = (V1;E1); : : : ;Gd = (Vd ;Ed) denote these subgraphs, with the
current node removed. We know that there are even number of odd
degree nodes in each of these Gi ’s. It follows that if we put the current
node back in, then there are odd number of odd degree nodes in each
Vi ’s. In particular, there is at least one odd degree node in each subset
of nodes V1; : : : ;Vd . Hence, in the graph G (which is the graph with
remaining edges at current step of the algorithm), there are at least
d+1 odd degree nodes counting the current node. This is a
contradiction if d > 2, since we know that there are only two odd
degree nodes from Fact 1.

Overview 1-6

3. complexity (running time): jE j steps, but even with the best known
algorithm for bridge-finding gives T (G) = O(jE j log3 jE j log log jE j)

a more efficient algorithm: Hierholzer, 1873
F idea: augmenting closed walks
F complexity: O(jE j)

Corollary. An undirected graph has an Eulerian path iff it is connected
and only two nodes have odd degrees.

Theorem. A directed graph has an Eulerian cycle off it is connected
and the in-degree is equal to the out-degree for all nodes.

Similarly, a Hamiltonian path is a path that passes each node exactly
once
However, the best known algorithm for finding a hamiltonian path has
exponential complexity Ω(en) (NP-complete)

Overview 1-7

Application: DNA sequencing
DNA is a chain of complementary nucleotides. There are 4 different
nucleotides: A, G, C, and T. One technique to sequence DNA,
introduced by Professor Patrick Brown, is to use a collection of small
subsequences of length k . DNA sequence is cut into pieces, and tagged
with a fluorescent agent, then exposed to an micro-array with known
subsequences. One can detect the presence of particular subsequences.

Given a DNA sequence s and all detected set of length k subsequences
� = f�1; : : : ; �n�k+1g, we want to reconstruct s from �.
For example, fATG;TGG;TGC ;GTG;GGC ;GCA;GCG;CGTg

ATG TGG TGC GTG GGC GCA GCG CGT AT TG

GG

GC CA

CGGT

F s is a Hamiltonian path (left): node is �i , edge if k � 1 overlap
F s is a Eulerian path (right): node is a length k � 1 subsequence, edge if

�i

Overview 1-8

Pseudo code for Eulerian cycle algorithm
Input: G(V0; E0)

Output: Eulerian cycle w = (w1; : : : ; wm+1)

pick v 2 V
set E E0

w ()
repeat until no more edge to move

I for each (v ;u) 2 E
F if removing (v ;u) does not disconnect G(V0;E) or if there is only one

edge (v ;u) in E then
F remove (v ;u) from E
F w = w + (v ;u)
F v u
F else break

end repeat
if E is empty output w
else declare no Eulerian cycle

Overview 1-9

Graphs, Networks, and Algorithms

overview of the course
I Part 1: network algorithms

F learn many interesting problem on graphs and networks (motivated by
real applications)

F identify which problems are solvable and which are not
F algorithms for exactly or approximately solving the problems
F analyze those algorithms: correctness and complexity

I Part 2: neural network on graphs
F apply neural network to solve the problems we learned in part 1

examples
I minimum spanning tree
I matching
I maximum flow
I spectral methods
I linear programming

Overview 1-10

Minimum spanning trees
tree: a connected graph with no cycle
leaf: a node in a tree with degree one
claim 1 the number of edges in a tree of size n is n � 1 (Homework 0)
claim 2 every finite size tree of size at least two has at least two leaves
proposition. if a graph has two of the following three properties, it
has all three
1. G is connected
2. G has no cycle
3. jE j = jV j � 1

Therefore, any graph with any two of the above properties is a tree
proof.

I (1); (3)) (2): we prove by contradiction. Suppose there are cycles.
Then, we can remove an edge in a cycle and the resulting graph is still
connected. we remove edges until we get a connected graph with no
cycle. Then by claim 1., there must be n � 1 edges. However, this is a
contradiction. We removed (some positive number of) edges starting
from n � 1 edges. So it is impossible that we end up with n � 1 edges.

I (2); (3)) (1): Similarly, assume (2), (3) and suppose (1) is false.

Overview 1-11

Minimum spanning trees

definition. spanning tree of a connected undirected graph: a tree
composed of all vertices and a subset of the edges
definition. minimum spanning tree of a weighted connected
undirected graph: a spanning tree with minimum weight
motivation: design of an efficient connected network (e.g. electrical
grid, transportation network), phylogeny

Overview 1-12

definition. Cut: a cut (S ; S 0) is a partition of V such that
S \ S 0 = ; and S [S 0 = V . The set of edges between S and S 0 is
also called a cut or a cut-set.
definition. Forest: a forest is a collection of disconnected trees
properties of a minimum spanning tree

I in general, MST is not unique

I Uniqueness: if each edge has a distinct weight, then MST is unique.
F Proof by contradiction:

MST: T1

MST: T2 T1+T2

5

6

5

New MST
with a smaller weight

6

5

Overview 1-13

Uniqueness: if each edge has a distinct weight, then MST is unique.
I Proof by contradiction:

Assume there are two MSTs T1 and T2. Consider one edge e1 which is
included T1 but not in T2. Also consider another edge e2 which is in
T2 but not in T1, and makes a cycle when added to T1 such that the
cycle includes e1.

Without loss of generality, let e1 be the one with strictly smaller weight
than e2. Then, by removing e2 from T2 and adding e1, we can create
a new spanning tree that has strictly smaller weight than T2. This
contradicts with our assumption that T2 is a minimum spanning tree.

Overview 1-14

I Cut property: for any cut C in the graph, if the weight of an edge e of
C is smaller than any other edges of C , then e belongs to all MST’s.

F Proof by contradiction:

5 4

10

5

Suppose exists a MST without edge e

e

We can create another MST
with a smaller weight

4

Assume that there exists a cut such that the minimum weight edge
(i ; j) in that cut is not in a MST. Then, there is another edge (k ; `) in
the cut which is included in the MST. If we create another spanning
tree from the MST by eliminating (k ; `) and adding (i ; j), then the
weight of this new spanning tree is smaller than the original MST. This
violates the assumption that the original tree was a MST.

I Minimum-cost edge: If an edge e is the edge with unique minimum
cost in a graph, then e is included in all MST.

F This follows from the Cut property, since there is a cut that includes
this min-cost edge.

How can we find one of MSTs in a weighted undirected graph?
Overview 1-15

Algorithms for finding a MST
I Prim’s algorithm, 1957

1. Initialize ET = fg and VT = fig with any single node i
2. Grow the tree by one edge: of all the edges that connect the tree to

nodes not yet in the tree, find the minimum-weight edge, and transfer
it to the tree.

3. Repeat until all nodes are in the tree

correctness of Prim’s algorithm follows from the cut property
complexity of Prim’s algorithm: O(jV j2) using adjacency matrix and
distance array

I Kruskal’s algorithm, 1956
1. Initialize ET = fg and VT = V
2. Sort the edges such that c(ei1) � � � � � c(eim)
3. While jET j < jV j � 1, add the cheapest unused edge that does not

create a cycle and discard the chosen edge and those edges that create
cycles from the candidate set

I correctness of Kruskal’s algorithm follows from the cut property, since
we are adding the minimum weight edge in a cut

I complexity of Kruskal’s algorithm: O(jE j log jE j) = O(jE j log jV j) if
we use the best union-find data structure

Overview 1-16

Application: clustering in bio-informatics
DNA arrays measure gene expressions. One can use these gene
expressions to compute a distance d(i ; j) between a pair of genes gi
and gj . This distance d(i ; j) records how close, or similar, genes gi
and gj are, based on their expression levels. Given n nodes (=genes)
and distance between all pairs of nodes, clustering problem aims to
partition the nodes into k groups, such that the nodes in the same
group are closer compared with nodes in different groups. Consider a
clustering C = fC1; : : : ;Ckg, where C partitions the nodes into k
groups. Then we can formulate the clustering problem as

maximizeC D(C) ;

where D(C) , mini ;j D(Ci ;Cj) and
D(Ci ;Cj) , minu2Ci ;v2Cj d(u ; v).

Overview 1-17

I Consider the following MST based clustering. Given a minimum
spanning tree, delete the most expensive k � 1 edges in the MST.
Then, let C denote the k partition resulting from the k connected
components of the deletion.
Theorem. The partition C of the MST based clustering is the optimal
solution to maximizing D(C).
proof.

We prove by contradiction. Assume there is another clustering
C � = fC �

1 ;C �
2 ; : : : ;C �

k g such that it achieves larger utility:
D(C �) > D(C).

exists an edge from MST that is
CUT in C* but not in C

C1 C2

C*1

C*2

C*1 C*25
2

5
21

Overview 1-18

Theorem. The partition C of the MST based clustering is the
optimal solution to maximizing D(C).
proof.

We prove by contradiction. Assume there is another clustering
C � = fC �

1 ;C
�
2 ; : : : ;C

�

k g such that it achieves larger utility:
D(C �) > D(C).

v

u

Ci

MST

C �

j

C �

k

One fact is that by the cut property of a MST, for a pair of cluster Ci
and Cj , the deleted edge of MST that was connecting these two sets
has the minimum weight among all edges between Ci and Cj .
Consider two nodes u and v , which are adjacent in the MST and in the
same cluster C but different clusters in C �. Since we deleted largest
edges in MST to get C , we know

d(u ; v) � min
a;b

D(Ca ;Cb) = D(C)

Also, by definition, D(C �) � D(C �

k ;C
�

j) � d(u ; v). This contradicts
the supposition that D(C �) > D(C).

Overview 1-19

Application: MST gives a heuristic for phylogeny (tree of life)
[A method for constructing phylogenic tree based on MST, Yang et al. 2011]

distance matrix between genes

corresponding MST Phylogenic tree
Overview 1-20

Example: minimax path problem
[Network Flows, Ahuja, Magnanti, Orlin, page 513]

On a weighted undirected graph G = (V ;E ; fwij g), define the value of a path
P = p1p2 � � � pk from node p1 to node pk as the maximum weight of an edge in P :

V (P) = max
i=1;:::;k�1

wpi ;pi+1

The minimax path problem is to find, for every pair of nodes i and j , a minimum
value path from node i to j . Let T be the minimum spanning tree on G.

Theorem. The unique path between i and j in the MST T is the minimum value
path between i and j .

proof. Let us focus on a particular pair of nodes i and j . Let P be the unique
path between i and j in T . Let (k ; `) be the maximum weight edge in P . Then,
removing (k ; `) from T creates two partitions S and S 0, such that i 2 S and
j 2 S 0. This defines a cut (S ;S 0). For any edge in the cut (i 0; j 0) such that i 0 2 S
and j 0 2 S 0, the cut property of a MST implies that

wk ;` � wi 0;j 0

Overview 1-21

Since any path P 0 between i and j must contain one of the nodes from the cut
(S ;S 0), wk ;` is the value of path P and P is the minimum value path. Hence, this
establishes that the unique path in MST T is the minimum value path between all
pairs of nodes.

Overview 1-22

Examples 1
Problem 1. [Network Flows, Ahuja, Magnanti, Orlin, page 513]
An intelligence service has n agents in a non friendly country. Each agent knows
some of the other agents and can exchange messages with them. For each
message exchanged between agents i and j , the message will fall into hostile
hands with a certain probability pij that is known to us. The leader wants to pass
a message to everyone while maximizing the total probability that the message is
not intercepted, where the probability of the message not being intercepted is

P(message not intercepted) =
Y

(i;j)2E

(1� pij) ;

where E is the set of all pairs of agents exchanging messages.

Consider an undirected graph, where each node is an agent and an edge indicates
that those two agents can exchange messages. That is two agents who are not
connected by an edge cannot exchange messages.
Explain how to find the set E of pairs of agents that needs to exchange messages,
such that the probability of message being intercepted is minimized and every
agent has the messages when no interception occurs. Specifically, formulate this
problem as a maximum spanning tree problem, and explain your answer. (note
that maximum spanning tree algorithm maximizes the sum of the weights and not
the product of the weights in the spanning tree.)

Overview 1-23

Example 1
Problem 2. [Network Flows, Ahuja, Magnanti, Orlin, Ex.13.6] Consider the
following network of a highway map, and the number on the edge is the maximum
elevation encountered in traversing the edge. A traveler plans to drive from node 1
to node 12 on this highway. This traveler dislikes high altitudes and so would like
to find a path connecting node 1 to node 12 that minimizes the maximum
altitude. Formulate this as a minimum spanning tree problem and find the best
path for this traveler.

1

2

3

4

5

6

7

8

9

10

11

12

1

9

4

4

5

3

7

6

5

3

6

2

1

7

2

1

2

Overview 1-24

Examples 1

Problem 3.

We proved in class the cut property of a Minimum Spanning Tree
(MST). Let cut C be the collection of edges between two partition of
vertices (S ;S c). Then, if an edge in C has smaller weight than any
other edges in C , it belongs to all MSTs of this graph.
(a) In this problem we prove the cycle property of a MST. Show that in

any cycle C in the graph, if an edge has larger weight than any of the
other edges in C , then this edge cannot belong to an MST.

(b) In this problem, we prove a sufficient condition for uniqueness of a
MST. First, show that a graph has a unique minimum spanning tree if,
for every cut of the graph, the edge with the smallest weight across the
cut is unique. Next, show that the converse is not true by giving a
counter-example.

(c) In this problem, we prove a sufficient condition for uniqueness of a
Minimum Spanning Tree. First, show that a graph has a unique
minimum spanning tree if, for every cycle in the graph, the edge with
the largest weight in the cycle is unique. Next, show that the converse
is not true by giving a counter-example.

Overview 1-25

Examples 1

Problem 4.

Prove that at least one of G or G is connected. Here, G is a graph on
the vertices of G such that two vertices are adjacent in G if and only if
they are not adjacent in G .

Problem 5.

Given a graph G , two players play the following game. Destroyer plays
first and and removes an edge of his choice. Then Connector takes his
turn and fixes an edge of his choice. A removed edge cannot be fixed
anymore and a fixed edge cannot be removed anymore. The players
alternate, one edge at a time. Connector wins if he fixes a spanning
tree in the graph. Destroyer wins if he manages to disconnect the
graph. (It’s easy to see that exactly one player wins at some point.)
Prove that Connector has a winning strategy, if and only if G contains
two edge-disjoint spanning trees.

Overview 1-26

