
5. Network flow

Network flow

Maximum flow problem

Ford-Fulkerson algorithm

Min-cost flow

Network flow 5-1



Network flow
I Network N is a set of

F a directed graph G = (V ;E)
F a source s 2 V which has only outgoing edges
F a sink (or a destination) t 2 V which has only incoming edges
F a positive integral capacity cij on each directed edge (i ; j )

F we can define network on an undirected graph by making every edge
bi-directional

F the integral capacity assumption can be relaxed some times, but it is
necessary other times

I a flow f : E 7! R+ is feasible if
F edge capacity limit:

0 � fij � cij

for all (i ; j ) 2 E
F conservation of flow: X

j

fij =
X

k

fki

for all i 2 V n fs ; tg

Network flow 5-2



I define. the value of the flow is the amount of flow leaving the source
F claim. equivalently, the value of a feasible flow is the amount of flow

entering the sink

v(f ) =
X

j

fsj =
X

j

fjt

I proof.

v(f ) =
X

j

fsj

=
X

j

fsj +
X

i2V nfs;tg

hX
a

fia �
X
b

fbi
i

=
X
i2V

X
j2V

fij �
X

i2V nftg

X
j2V

fji

=
X
i2V

X
j2V

fij �
X
i2V

X
j2V

fji +
X

j

fjt =
X

j

fjt

the last line follows from the fact that, in the summation, the flows
coming from the source are counted only once with negative sign and
the flows going to the sink are counted once with a positive sign.

I max-flow problem is to find a feasible flow with maximum valueNetwork flow 5-3



I we denote a partition of nodes into two sets S and S c , a s-t cut, by
the notation (S ;S c), where s 2 S and t 2 S c

I the value of the cut c(S ;S c) is the sum of all capacities leaving S
and entering S c

c(S ;S c) =
X

a2S ;b2S c

cab

I claim. for any cut (S ;S c) it can be shown that

v(f ) =
X

a2S ;b2S c

fab �
X

a2S ;b2S c

fba

proof.

v(f ) =
X

j

fsj =
X

j

fsj +
X

i2Snfsg

hX
a

fia �
X

b

fbi
i

=
X
i2S

X
a2S

fia +
X
i2S

X
a2Sc

fia �
X
i2S

X
a2S

fai �
X
i2S

X
a2Sc

fai

=
X

a2S ;b2Sc

fab �
X

a2S ;b2Sc

fba

since all terms fa;b with both a and b in S appear twice, once with positive
sign and once with the negative sign, canceling each other, except for those
which cross over S and S c

Network flow 5-4



I claim. for any flow f and any cut (S ;S c), v(f ) � c(S ;S c)
proof.

v(f ) =
X

a2S ;b2Sc

fab �
X

a2S ;b2Sc

fba �
X

a2S ;b2Sc

fab �
X

a2S ;b2Sc

cab = c(S ;S c)

I claim. max-flow � min-cut

max
f feasible

v(f ) � min
S

c(S ;S c)

Network flow 5-5



max-flow problem
I for general networks, there is a polynomial time algorithm that finds

the max-flow
I the max-flow is always equal to the min-cut value

max
f feasible

v(f ) = min
(A;B)

c(A;B)

I Greedy max-flow algorithm (sub-optimal)
F Initialize fij = 0 for all i ; j
F repeat

- find a path P between s and t such that

min
(i;j )2P

(cij � fij ) > 0

- call such a path unsaturated
- let df = min(i;j )2P (cij � fij )
- set fij = fij + df for all (i ; j ) 2 P

F until no more unsaturated s � t paths
I this algorithm is inefficient (number of paths can be exponential in the

size of the graph)
I this algorithm does not find the max-flow (sub-optimal)

Network flow 5-6



a residual network R(N ; f ) = (V ;Er ) is a vertex set V with
weighted and directed edge set Er constructed as follows:

F if fij < cij place an edge (i ; j ) with capacity c0ij = cij � fij
F if fij > 0 place an edge (j ; i) with capacity c0ji = fij (note that this is in

the opposite direction)
I idea: any path P in R(N ; f ) gives a path which we can increase the

flow, including the ones that reverse previously assigned ones

I Ford-Fulkerson algorithm, 1956
F Initialize fij = 0 for all i ; j
F while there is a path P from s to t in R(N ; f ) do

- send a flow of value df = min(i;j )2P c0ij in R(N ; f ) along P
- update f in (N ; f ): set fij = fij + df for all (i ; j ) 2 P
- rebuild the residual network R(N ; f )

F end while

I a path in a directed graph is a sequence of nodes v1v2 � � � vk such that
there is a directed edge from vi to vi+1

Network flow 5-7



I theorem. If Ford-Fulkerson algorithm terminates, it outputs a
maximum flow

I proof.
F suppose the algorithm terminates at time T with flow f �, then there is

no path from s to t in R(N ; f )
F let S be the set of nodes reachable from s
F claim 1. v(f �) = c(S ;S c)
F this proves that f � is the maximum flow, since we already know that

the maximum flow is at most the minimum cut and we found a flow
whose value is the same as a cut (which is also a minimum cut)

I proof of claim 1.
F if exists an edge (i ; j ) such that i 2 S , j 2 S c , and f �ij < cij , then

there must be an edge in R(N ; f �) from S to T
F if exists an edge (i ; j ) such that i 2 S c , j 2 S , and f �ij > 0, then there

must be an edge in R(N ; f �) from S to T
F therefore,

v(f ) =
X

i2S ;j2Sc

fij|{z}
=cij

�
X

i2S ;j2Sc

fji|{z}
=0

= c(S ;S c)

Network flow 5-8



corollary. the minimum cut value in a network is the same as the
maximum flow value

corollary. if all edge capacities in a network are non-negative integers,
then there exists an integral maximum flow

we are left to show that the algorithm terminates under mild
assumptions:
claim. for a network where all weights are rational numbers,
Ford-Fulkerson algorithm terminates in finite time

it should also be noted that there are cases where the algorithm does
not terminate:
claim. there exists a network with irrational weights such that
Ford-Fulkerson algorithm never terminates

Network flow 5-9



1 2 3 4

S

t

M
M

M

M M M

1 1 r =

p
5 � 1

2

e1 e3 e2

residual flow
step augmenting path added flow e1 e2 e3
0 1 r 1
1 (s ; 2; 3; t) 1 1 r 0
2 (s ; 4; 3; 2; 1; t) r r2 0 r
3 (s ; 2; 3; 4; t) r r2 r 0
4 (s ; 4; 3; 2; 1; t) r2 0 r3 r2

5 (s ; 1; 2; 3; t) r2 r2 r3 0
I r is chosen such that r2 = 1� r
I since after step 1 we have the same residual capacity as after step 5 up

to a scaling by r2, the process never stops
I the value of flow converges to v(f1) = 1 + 2

P1
i=1 r i = 3 + 2r , while

the maximum flow is v(f �) = 2M + 1
I the algorithm never terminates, and further the flow value does not

converge to the maximum
Network flow 5-10



Run-time
I lemma. if all edge capacities of N are integral, then Ford-Fulkerson

algorithm terminates in O(m v(f �)) time

I proof. the value of the flow increases at least by one at each iteration,
and a directed path can be found in O(m) time

I how many operations do we need to search for a path from s to t in a
directed graph with number of edges at most m?

I how many iterations are required in the worst-case?

I Shortest Augmenting Path (SAP)
F Choose the augmenting path in the residual network that has the

fewest number of edges
F lemma. If, at a certain iteration, the length of a shortest path from s

to t in the residual network is `, then at every subsequent iterations it
is � `. Furthermore, after at most m iterations, the distance from s to
t must become � `+ 1.

F lemma. the shortest augmenting path can be found in O(m) time
using breadth-first search.

F theorem. SAP implementation of Ford-Fulkerson algorithm runs in
time O(m2n), where m = jE j and n = jV j.

Network flow 5-11



Application
I Project selection problem is defined by

F a set of projects fT1; : : : ;Tng, each with a positive profit Pi
F a set of equipments fE1; : : : ;Emg, each with a positive cost Cj
F a project has a subset of equipments which are prerequisite

I find the optimal subset of projects that satisfy the prerequisite
requirements and has maximum total profit.

F construct a graph G where all the projects are connected to the source,
and the weight of that edge is Pi

F connect all the equipments to the sink, and the weight of that edge is
Cj

F if Ej is a prerequisite for Ti then add an edge (Ti ;Ej ) with weight 1
F claim. a cut (A;B) with a finite value c(A;B) <1 defines a feasible

set of equipments and projects
F claim. find the minimum cut (A�;B�). B� n t is the set of projects and

equipments that give maximum profit.

c(A;B) = P+ � (
X
Ti2B

Pi �
X
Ej2B

Cj )

| {z }
net profit

;

where P+ =
P

i Pi is the total profit achievable if one does all the
projects.

Network flow 5-12



I Team elimination problem
F wins: (NYY,93), (BOS,89), (BAL,86), (TOR,88)
F games to play: (NYY-BOS,1), (NYY-TOR,6), (NYY-BAL,1),

(BOS-BAL,3), (TOR-BAL,1)
F Question: Can Boston end up winning the division?

I Max-flow formulation
F suppose BOS has won all the remaining games
F consider a network with a source s and a sink t
F each pair of teams NYY-TOR is a node, and connect it to the source

with weight equal to games to play
F each team BAL is a node, and connect matches to teams with infinite

capacity
F add edge between each team and the sink with weight W � wi , where

wi is how many times the team has won, and W is the most wins BOS
can have if it wins all the rest of the game. This ensures that each
team does not accumulate more than W wins.

I if max-flow is less than or equal to the total number of remaining
games, then BOS still has a chance (since there is a way to distribute
the wins of the remaining games such that no team exceeds BOS wins)

I if max-flow is strictly less than the total number of remaining games,
then BOS should be eliminated (since no matter how we distribute the
wins of the remaining games, there is no way all teams can have less
wins than BOS)

Network flow 5-13



Minimum cost flow
motivating example:

F There are n workers and n jobs. Assigning worker i to job j incurs a
cost aij . Match workers to jobs such that the total cost is minimized
(while maximizing the cardinality of the matching).

this weighted matching problem is a special case of minimum cost
flow problem:

minimum cost flow problem:
F given a network N , whose edges each have a cost per unit flow aij and

an integer capacity cij , find a minimum-cost flow of value v

if we change this problem such that the cost is for using the edge
independent of the flow, then the problem becomes NP-hard (i.e. no
known algorithm can solve it in polynomial time)

given N , we can always find the maximum flow value v�, and we also
know that for the value of v > v� it is impossible to find a flow of
value v

Network flow 5-14



Review of Ford-Fulkerson algorithm for max flow problem

1

s

a

b

t

510

5
1

10

s

a

b

t

5 5

FLOW R(n,f)

s

a

b

t

510

5
1

5
5

s

a

b

t

5
1

6

s

a

b

t

59

5
1

4
6

1

6
s

a

b

t
5

1

6

5
s

a

b

t

54

5
1

4
6

6

Network flow 5-15



Minimum cost flow
Idea: find the minimum cost augmenting path
Definition. The cost of an augmenting path is the sum of the costs
of its edges.
When constructing a residual graph, put �cij on the reverse edges.
Definition. An augmenting cycle c is a directed cycle, whose edges
all have positive capacity. The cost of c is the sum of the cost of
directed edges in c.
If we have a negative cost cycle, then we can augment the cycle to our
flow to get another flow of same value but smaller cost.

1

s

a

b

t

5/52/10

4/5

1/1

1/10

s

a

b

t

2 2

FLOW R(n,f)

s

a

b

t

5/52/10

-4/2

1/1

1/8

-1/2

s

a

b

t

1
1

2

s

a

b

t

5/5
2/9

-4/1
1

1/8
-1/2

1

cost/capacity

4/3

4

Network flow 5-16



Minimum cost flow

Theorem. A flow f of value v has a minimum cost among all flows
that have value v if and only if there is no negative cost cycle in the
residual network R(N ; f ).
Proof.

I ()) Proof by transposition. Suppose there is a negative cost cycle,
then we can add that cycle to our flow to get smaller cost flow of the
same value. Then the original flow is not minimum cost flow.

I (() Proof by transposition. Suppose f is not minimum-cost flow.
Then, there is a cheaper flow g of value v . The flow g � f can be
decomposed into a union of augmenting cycles. One of the cycles has a
negative cost, since g � f has negative cost.

This gives a way for checking whether a flow has minimum cost or
not. How do we find find the minimum cost flow?

1
s

a

b

t

5/52/10

4/5

1/1

1/10

s

a

b

t

2 2

flow f

s

a

b

t

1
1

2

cost/capacity min-cost flow g

2/1

s

a

b

t
-4/1

1/1

g-f

Network flow 5-17



Minimum cost flow
Theorem. Let f be a minimum cost flow of value v . And let P be a
minimum-cost augmenting path in the residual graph R(N ; f ). Then,
augmenting f by adding P gives a minimum-cost flow of value v + 1
(let’s call it g).
Proof. Proof by transposition.

I Suppose g was not a minimum cost flow. Then, from the previous
proof, we know that g admits a negative cost cycle C in the residual
graph (which was not present in the residual graph R(N ; f )). Since f
admits no negative-cost cycles, there must be some edge (i ; j ) 2 P
with (j ; i) 2 C . Then, P is not the minimum cost augmenting path in
R(N ; f ), since P + C is an augmenting path with smaller cost.

2

s

a

b

t

5/52/10

4/5

1/1

1/10

s

a

b

t

1

1

FLOW R(n,f)

s

a

b

t

5/5
-2/1

4/5
-1/1

1/9

-1/1

s

a

b

t

1

1

1

s

a

b

t

5/4

-2/2
-1/1

1/9
-1/2

2/8
cost/capacity

2/9

4/5

1

-5/1

Network flow 5-18



Minimum cost flow

Successive shortest paths algorithm.
I Start with f = 0.
I Repeat finding minimum cost augmenting paths in the residual graph.
I Add that flow to current flow until the value is v .

Network flow 5-19



Application: Community detection in social network

Social network is a network of people connected to their ‘friends’
Recommending friends is an important practical problem
solution 1: recommend friends of friends
solution 2: detect communities

I idea1: use max-flow min-cut algorithms to find a minimum cut
I it fails when there are outliers with small degree
I idea2: find partition A and B that minimize conductance:

min
A;B

c(A;B)

jAjjB j

Network flow 5-20



Exercise
Problem 1.

A local charity wishes to organize a series of blind dates. There are n
male and n female students, and each male student is to be paired
with a female student each evening. Based on forms filled in by the
participants, the we know which pairs of students are compatible.

(a) Given this information, describe an algorithm to find the maximum
number of rounds of blind dates that can be organized, subject to the
following conditions: each round consists of exactly n dates, no student
can participate in more than one date in the same round, no student
encounters another student more than once, and no two incompatible
people are ever matched.

(b) Consider a bipartite graph with n males nodes and n female nodes,
and undirected edges connecting compatible pairs. One might be
tempted to try a greedy algorithm of finding one perfect matching on
this graph, and then removing those edges found in this perfect
matching and again finding a perfect matching until there is no more.
However, this greedy approach can find sub-optimal solution, where the
algorithm finds the number of perfect matchings that is strictly smaller
than the maximum number of perfect matchings in the bipartite graph.
Give an example (perhaps with three male nodes and three female
nodes) of such a bipartite graph and demonstrate that the greedy
algorithm can fail.

Network flow 5-21



Exercise

Problem 2.
There are n students in a class. We want to choose a subset of k
students as a committee. There has to be m1 number of freshmen, m2

number of sophomores, m3 number of juniors, and m4 number of
seniors in the committee. Each student is from one of
k = m1 + m2 + m3 + m4 departments. Exactly one student from each
department has to be chosen for the committee. We are given a list of
students, their home departments, and their class (freshman,
sophomore, junior, senior).

Describe an efficient algorithm to select who should be on the
committee such that the constraints are satisfied.

Network flow 5-22



Exercise
Problem 3. We have an n � n grid like below. A subset of the cells are ‘point cells’

(marked as black). A monotone path in the grid starts at the top-left
cell and at each cell can only move to either right or down by one step
(if there exists a cell to the right or below). Eventually, the path ends
at the bottom-right cell. The goal is to cover as many ‘point cells’ as
possible, with a single monotone path.

Figure: Greedily covering the point cells with three monotone paths.

(a) Describe an efficient algorithm for finding a monotone path that covers
the maximum number of ‘point cells’.

(b) Now consider the problem of covering all point cells using multiple
monotone paths. The goal is to cover all point cells using as small
number of paths as possible. A greedy heuristic is to iteratively apply
the above algorithm. At each step, find the monotone path that covers
maximum number of point cells that are not already covered, and
repeat until all point cells are covered. Prove by counter example that
this algorithm does not always give the optimal solution.

(c) Describe an efficient algorithm to compute the smallest set of
monotone paths that covers every point cells.Network flow 5-23



Exercise

Problem 4.
(a) Given a network G = (V ;E ; s ; t), give a polynomial time algorithm to

determine whether G has a unique minimum s � t cut.

Network flow 5-24


