5. Graph Convolutional Neural Network
What is a graph convolutional neural network (GCNN)?

- Consider a machine learning problem with graph data

- **Type 1. Graph classification**
 - input: \(\{(G_1(V_1, E_1, X_1, Z_1), Y_1), \ldots, (G_1(V_n, E_n, Z_n, X_n), Y_n)\} \)
 - \(n \) samples of graphs with nodes \(V_i \), edges \(E_i \), node features \(X_1 \), edge weights \(Z_1 \), graph label \(Y_1 \)
 - goal: find \(f_W(G_i(V_i, E_i, X_i, Z_i)) = \hat{Y} \) to predict the graph label

- **Type 2. Semi-supervised node classification**
 - input: Single graph \(G(V, E) \), labeled nodes \(\{(X_1, Y_1), \ldots, (X_L, Y_L)\} \), unlabeled nodes \(\{X_{L+1}, \ldots, X_n\} \)
 - goal: find a function \(f_W(G, X_{1:n}) = \hat{Y}_{1:n} \) to predict the node label

- **Type 3. Unsupervised node embedding (graph auto-encoder)**
 - input: Single graph \(G(V, E) \)
 - goal: find an encoder \(f_W(G) = \hat{X}_{1:n} \) and a decoder \(g_W(\hat{X}_{1:n}) = \hat{G} \) to predict the edges

- Main challenge: graphs change in size and connections, and it is not clear how to input it to a neural network, as opposed to typical datasets that are set of fixed size real-valued vectors.
Examples of practical problems tackled with GCNN

- Type 1. supervised classification of molecular network for drug discovery
Examples of practical problems tackled with GCNN

- Type 2. semisupervised classification of documents in citation network
Examples of practical problems tackled with GCNN

- Type 3. unsupervised link prediction on knowledge graph
Examples of (practical?) problems we can tackle

Example 1. Detecting clusters (exponential but groundtruth available)

- Input: \(\{G_i(V_i, E_i)\}_{i=1}^{n}, \{Y_i = 0\}_{i=1}^{n}, \{G_i(V_i, E_i)\}_{i=n+1}^{2n}, \{Y_i = 1\}_{i=n+1}^{2n}\)

one set of samples generated from Erdos-Renyi graph, and another set from Stochastic Block Model

- Goal: classify a graph whether it is from ER or SBM

- Research question
 - which graph neural network architecture/loss should we use?
 - which parameters for ER and SBM should we use?
 - does the architecture scale? can we train on small graphs and test on large graphs?
 - is it robust? can we train on one parameters and test it on another?
 - how does it compare against other (non-neural network) methods that use the knowledge of SBM explicitly?
Examples of (practical?) problems we can tackle

- Example 2. estimating minimum spanning tree (polynomial)
 - Input: \(\{G_i(V_i, E_i, Z_i)\}_{i=1}^n, \{Y_i\}_{i=1}^n \) generate weighted graphs, and corresponding value of minimum spanning trees
 - Goal: estimate the value of the minimum spanning tree
 - Research question
 - which graph neural network architecture/loss should we use?
 - which input graphs should we use? (random graph with random weights is not good)
 - does the architecture scale? can we train on small graphs and test on large graphs?
 - is it robust? can we train on one type of graphs/weights and test it on another?
 - how does it compare against the exact algorithm?
Examples of (practical?) problems we can tackle

- Example 3. estimating PageRank scores (polynomial)
 - Input: $\{G_i(V_i, E_i)\}_{i=1}^n, \{Y_i\}_{i=1}^n$
 - generate directed graphs, and corresponding pagerank scores for all nodes
 - Goal: estimate the pagerank score
 - Research question
 - which graph neural network architecture/loss should we use?
 - which input graphs should we use? (random graph is not good, perhaps preferential attachment graph is better)
 - does the architecture scale? can we train on small graphs and test on large graphs?
 - is it robust? can we train on one type of graphs/weights and test it on another?
 - how does it compare against the exact algorithm?
Examples of (practical?) problems we can tackle

- Example 4. detecting Eulerian cycle (polynomial)
 - Input: \(\{G_i(V_i, E_i)\}_{i=1}^n, \{Y_i\}_{i=1}^n \)
 - generate directed graphs, and label it as Eulerian or not
 - Goal: detect Eulerian graphs
 - Research question
 - which graph neural network architecture/loss should we use?
 - which input graphs should we use?
 - does the architecture scale? can we train on small graphs and test on large graphs?
 - is it robust? can we train on one type of graphs/weights and test it on another?
 - how does it compare against the exact algorithm?
Examples of (practical?) problems we can tackle

- Example 5. detecting Hamiltonian cycle (exponential)
 - Input: \(\{G_i(V_i, E_i)\}_{i=1}^n, \{Y_i\}_{i=1}^n \)
 - Generate directed graphs, and label it as Hamiltonian or not
 - Goal: detect Hamiltonian graphs
 - Research question
 - How do we find the labels of the training examples??
 - Which graph neural network architecture/loss should we use?
 - Which input graphs should we use?
 - Does the architecture scale? Can we train on small graphs and test on large graphs?
 - Is it robust? Can we train on one type of graphs/weights and test it on another?
 - How does it compare against other heuristics?
Examples of (practical?) problems we can tackle

Example 6. finding maximum cut (exponential)

- Input: \(\{G_i(V_i, E_i, Z_i)\}_{i=1}^{n}, \{Y_i\}_{i=1}^{n} \)
generate weighted undirected graphs, and label it with its maximum cut
- Goal: estimate max cut
- Research question
 - How do we find the labels of the training examples??
 - which graph neural network architecture/loss should we use?
 - which input graphs should we use?
 - does the architecture scale? can we train on small graphs and test on large graphs?
 - is it robust? can we train on one type of graphs/weights and test it on another?
 - how does it compare against other heuristics?
Examples of (practical?) problems we can tackle

- Example 7. finding minimum cut (polynomial)
 - Input: \(\{G_i(V_i, E_i, Z_i)\}_{i=1}^n, \{Y_i\}_{i=1}^n \)
 - generate weighted undirected graphs, and label it with its minimum cut
 - Goal: estimate min cut
 - Research question
 - which graph neural network architecture/loss should we use?
 - which input graphs should we use?
 - does the architecture scale? can we train on small graphs and test on large graphs?
 - is it robust? can we train on one type of graphs/weights and test it on another?
 - how does it compare against exact algorithm?
Examples of (practical?) problems we can tackle

Example 8. finding max-weight matching (polynomial)

- **Input:** \(\{G_i(V_i, E_i, Z_i)\}_{i=1}^n, \{Y_i\}_{i=1}^n \)
 - generate weighted undirected graphs, and label it with its edges that are matching
- **Goal:** estimate the set of edges in the matching
- **Research question**
 - which graph neural network architecture should we use?
 - which input graphs should we use?
 - does the architecture scale? can we train on small graphs and test on large graphs?
 - is it robust? can we train on one type of graphs/weights and test it on another?
 - how does it compare against exact algorithm?
Examples of (practical?) problems we can tackle

- Example 9. graph coloring (exponential)
 - Input: $G(V, E)$,
 - Goal: for one given graph, learn the coloring of nodes such that adjacent nodes have different colors.
 - Research question
 - which graph neural network architecture should we use?
 - which loss function should we use?
Examples of (practical?) problems we can tackle

Example 10. estimate shortest paths (polynomial)
- Input: \(\{G_i(V_i, E_i, Z_i)\}, \{Y_i\} \), set of directed graphs with a single source and single target with distances on the edges, labeled by the length of the shortest path
- Goal: estimate the shortest path length
- Research question
 - which graph neural network architecture should we use?
 - which input graphs should we use?
 - does the architecture scale? can we train on small graphs and test on large graphs?
 - is it robust? can we train on one type of graphs/weights and test it on another?
 - how does it compare against exact algorithm?
Examples of (practical?) problems we can tackle

Example 11. semi-supervised learning with stochastic block models (exponential)

- Input: $G(V, E, X), Y_L$
 - generate one single graph from a stochastic block model, so that we know the labels of all the nodes
 - generate multi-dimensional features X_i for each node i from some distribution conditioned on the true label, e.g. $X_i \sim N(\mu_{Y_i}, \Sigma_{Y_i})$
 - reveal some of the labels of the nodes, perhaps 3% of the nodes
- Goal: find the labels of all the nodes
- Research question
 - which graph neural network architecture should we use?
 - does the architecture scale? can we train on small graphs and test on large graphs?
 - is it robust? can we train on one type of graphs/weights and test it on another?
Examples of (practical?) problems we can tackle

- **Example 12.** semi-supervised learning on citation networks (?
 - **Input:** $G(V, E, X), Y_L$
 - use the benchmark citation network datasets from https://linq.soe.ucsc.edu/node/236 called CiteSeer, CORA, and PubMed
 - **Goal:** find the labels of all the nodes
 - **Research question**
 - ★ which graph neural network architecture should we use?
 - ★ does the architecture scale? can we train on small graphs and test on large graphs?
 - ★ is it robust? can we train on one type of graphs/weights and test it on another?
 - ★ Can we beat the state-of-the-art?
Examples of (practical?) problems we can tackle

Example 13. supervised learning on molecular network (?)

- Input: \(\{G_i(V_i, E_i, X_i, Z_i)\}, \{Y_i\} \)
- use the benchmark citation network datasets
- Goal: classify the graph
- Research question
 - which graph neural network architecture should we use?
 - does the architecture scale? can we train on small graphs and test on large graphs?
 - is it robust? can we train on one type of graphs/weights and test it on another?
 - Can we beat the state-of-the-art?
Concrete examples of GNN in action: citation network

Citation Network Benchmark Dataset

Table: Citation Network Dataset

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Nodes</th>
<th>Edges</th>
<th>Classes</th>
<th>Features</th>
<th>Labeled nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CiteSeer</td>
<td>3,327</td>
<td>4,732</td>
<td>6</td>
<td>3,703</td>
<td>120</td>
</tr>
<tr>
<td>Cora</td>
<td>2,708</td>
<td>5,429</td>
<td>7</td>
<td>1,433</td>
<td>140</td>
</tr>
<tr>
<td>PubMed</td>
<td>19,717</td>
<td>44,328</td>
<td>3</td>
<td>500</td>
<td>60</td>
</tr>
</tbody>
</table>
Graph Convolutional Network (GCN) by Kipf and Welling [2017 ICLR]

- **Input:**
 - graph: $G(V, E)$ or equivalently $A \in \{0, 1\}^{n \times n}$
 - node features: $X \in \mathbb{R}^{n \times d_x}$
 - labeled nodes: $\{Y_i\}_{i \in L}$

- **Output:**
 - estimated classes: $Z = f_W(X, A) \in \mathbb{R}^{n \times d_y}$

Goal: graph-based semisupervised learning

How would you attack this problem?
Table 2: Classification accuracy in percent with a fixed split of data from (Yang et al., 2016).

<table>
<thead>
<tr>
<th>Input</th>
<th>Method</th>
<th>Citeseer</th>
<th>Cora</th>
<th>PubMed</th>
</tr>
</thead>
<tbody>
<tr>
<td>y^L_1, x^L_1</td>
<td>Singlelayer Perceptron</td>
<td>57.2</td>
<td>57.4</td>
<td>69.8</td>
</tr>
<tr>
<td></td>
<td>Multilayer Perceptron</td>
<td>64.0</td>
<td>57.5</td>
<td>71.4</td>
</tr>
<tr>
<td>y^L_1, x^{L+U}_1</td>
<td>T-SVM (Joachims, 1999)</td>
<td>64.0</td>
<td>57.5</td>
<td>62.2</td>
</tr>
<tr>
<td>y^L_1, G</td>
<td>DeepWalk (Perozzi et al., 2014)</td>
<td>43.2</td>
<td>67.2</td>
<td>65.3</td>
</tr>
<tr>
<td>y^L_1, x^{L+U}, G</td>
<td>LP (Zhu et al., 2003)</td>
<td>45.3</td>
<td>68.0</td>
<td>63.0</td>
</tr>
<tr>
<td></td>
<td>ICA (Lu & Getoor, 2003)</td>
<td>69.1</td>
<td>75.1</td>
<td>73.9</td>
</tr>
<tr>
<td></td>
<td>ManiReg (Belkin et al., 2006)</td>
<td>60.1</td>
<td>59.5</td>
<td>70.7</td>
</tr>
<tr>
<td></td>
<td>SemiEmb (Weston et al., 2012)</td>
<td>59.6</td>
<td>59.0</td>
<td>71.1</td>
</tr>
<tr>
<td></td>
<td>DCNN (Atwood & Towsley, 2016)</td>
<td></td>
<td>76.8</td>
<td>73.0</td>
</tr>
<tr>
<td></td>
<td>Planetoid (Yang et al., 2016)</td>
<td>64.7</td>
<td>75.7</td>
<td>77.2</td>
</tr>
<tr>
<td></td>
<td>MoNet (Monti et al., 2016)</td>
<td>81.7</td>
<td></td>
<td>78.8</td>
</tr>
<tr>
<td></td>
<td>Graph-CNN (Such et al., 2017)</td>
<td></td>
<td>76.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DynamicFilter (Verma et al., 2017)</td>
<td></td>
<td>81.6</td>
<td>79.0</td>
</tr>
<tr>
<td></td>
<td>Bootstrap (Buchnik & Cohen, 2017)</td>
<td>53.6</td>
<td>78.4</td>
<td>78.8</td>
</tr>
<tr>
<td></td>
<td>GCN (Kipf & Welling, 2016)</td>
<td>70.3</td>
<td>81.5</td>
<td>79.0</td>
</tr>
<tr>
<td>GLN</td>
<td></td>
<td>70.9±.05</td>
<td>81.2±.05</td>
<td>78.9±.05</td>
</tr>
<tr>
<td>AGNN (this paper)</td>
<td></td>
<td>71.7±.08</td>
<td>82.6±.09</td>
<td>79.9±.07</td>
</tr>
</tbody>
</table>
GCN:
[Input]-[Propagation]-[Perceptron]-[Propagation]-[Perceptron]- · · · -[SoftMax]-[Output]
Forward Pass:
- \(H^{(0)} = X \)
- Repeat for \(t = 1, 2, \ldots, T \)
 - \(\tilde{H}^{(t)} = PH^{(t-1)} \), with \(P = D^{-1}A \)
 - \(H^{(t)} = \text{ReLU}(\tilde{H}^{(t)}W^{(t)}) \)
- SoftMax\((H^{(T)}W^{(T+1)})\)
Training:
- Let \(Z = f_W(X, A) \)
- the weights \(W^{(1)}, W^{(2)}, \ldots, W^{(T+1)} \) are trained on the cross entropy loss
\[
\mathcal{L}_{X,A,Y_L}(W) = - \sum_{i \in [n]} \sum_{j=1}^{d_y} Y_{ij} \ln Z_{ij}
\]
Why cross entropy loss?

it measures distance between Y_i and Z_i, e.g.

$- \sum_j Y_{ij} \ln Z_{ij} = 0$ if $Y_i = [1, 0, 0]$ and $Z_i = [1, 0, 0]$, and

$- \sum_j Y_{ij} \ln Z_{ij} = - \ln(1/3)$ if $Y_i = [1, 0, 0]$ and $Z_i = [1/3, 1/3, 1/3]$.

What is GCN doing?

summarizing the neighborhood and extracting sufficient statistics

Naive approach: store all neighborhood information

- computationally intractable
- memory blows up
- varying dimensions

as a solution GCN summarizes the local neighborhood by local averaging in propagation layer, and attempts to find the sufficient statistics via perceptron layer, recursively.
some interpretation of the learned embeddings:

Figure: Average influence from a column class to a row class
Figure: Average influence from a column class to a row class
Other approaches for graph-based semi-supervised learning

- main question is "how do you encode the graph information into a learning?"

- graph as a regularizer

\[
\mathcal{L}_{X,A,Y_L}(W) = \sum_{i \in L} \ell(f_W(X_i), Y_i) + \lambda \sum_{(j,k) \in E} ||f_W(X_j) - f_W(X_k)||^2
\]

- this is a natural *parametric approach* that can be learned via back-propagation ["Deep Learning via Semi-supervised embedding " by Weston et al. 2012]

- two parts in the loss

- encode the graph as a part of the loss, forcing nearby nodes to have similar labels (or embeddings)
There are earlier regularization approaches that are non-parametric

\[
\mathcal{L}_{X,A,Y_L}(f) = \sum_{i \in L} \ell(f(i), Y_i) + \lambda \sum_{(j,k) \in E} B_{ij} \|f(j) - f(k)\|^2 \\
= \mathcal{L}_{\text{supervised}}(Y_L) + \mathcal{L}_{\text{regularizer}}(A,X)
\]

with \(B_{ij} = e^{-(X_i - X_j)^2 / \sigma^2} \).

This is a very popular approach known as \textbf{Label Propagation} \cite{label_propagation, zhu2002}

admits a closed form solution for \(\lambda \to 0 \)
we force true labels on the known nodes: \(f(i) = Y_i \), for \(i \in L \)

build a similarity matrix \(B \) with \(B_{ij} = e^{-(X_i - X_j)^2/\sigma^2} \)

build a **graph Laplacian** \(A = \text{diag}(B 1) - B \)

and consider binary classification where
\[
\begin{align*}
 f &= [f(1), \ldots, f(n)]
 \in \{0, 1\}^n
\end{align*}
\]

then the loss from previous slide becomes

\[
\text{minimize}_f \ f^T A f
\]

subject to \(f(L) = Y_L \).
This gives

$$\mathcal{L} = \begin{bmatrix} f_L & f_U \end{bmatrix} \begin{bmatrix} A_{LL} & A_{LU} \\ A_{UL} & A_{UU} \end{bmatrix} \begin{bmatrix} f_L \\ f_U \end{bmatrix}$$

and we can minimize \(\mathcal{L}(f_U) = f_L^TA_{LL}f_L + 2f_L^TA_{LU}f_U + f_U^TA_{UU}f_U \)

with \(f_U = A_{UU}^{-1}A_{UL}f_L \)

as it admits this closed-form solution, it is very popular, but ...
Concrete examples of GNN in action: community detection

- Input: graph $G(V, E)$ or A
- Output: $Z = f_W(A) \in \mathbb{R}^{n \times k}$ clustering of the node s into k classes

Spectral clustering:
consider binary classification for now and let $Z_i \in \{-1, +1\}$

$$\text{minimize } \sum_{i,j} A_{ij}(1 - Z_i Z_j)$$

minimizes the cut between two classes
and this is $\sum_j A_{ij}(1 - Z_i Z_j) = D_i - \sum_j A_{ij}Z_i Z_j$, and hence

$$\text{minimize } \sum_{i,j} Z_i L_{ij} Z_j = Z^T LZ,$$

where $L = D - A$ is the graph Laplacian of G, D_i is the degree of node i, $D = \text{diag}([D_1, \ldots, D_n])$
We want to solve

\[
\text{minimize } Z^T L Z
\]

subject to \(Z_i \in \{+1, -1\} \)

which is hard as it is a combinatorial problem. A common heuristic is to relax the constraint and solve

\[
\text{minimize } Z^T L Z
\]

subject to \(||Z||^2 = n \).

however, this has a trivial solution, \(Z_i = 1 \) for all \(i \), that achieves the minimum. Instead, we add a constraint that \(Z \)'s have to be orthogonal to \(\mathbf{1} \)

\[
\text{minimize } Z^T L Z
\]

subject to \(\sum_i Z_i = 0 \)

This has a beautiful analytical solution now:
GNN approach to community detection
[Community Detection with Graph Neural Networks, Joan Bruna, Xiang Li, 2017]

Architecture

\[H^{(0)} = \begin{bmatrix} \text{degree}_1 & \ldots & \text{degree}_n \end{bmatrix} \]

\[H_{1}^{(t+1)} = \text{ReLU} \left(H^{(t)} W^{(t,1)} + \text{diag}(A1) H^{(t)} W^{(t,2)} + \frac{1}{n} 1 1^T H^{(t)} W^{(t,3)} + H^{(t)} W^{(t,4+j)} \right) \]

\[H_{2}^{(t+1)} = H^{(t)} W^{(t,1)} + \text{diag}(A1) H^{(t)} W^{(t,2)} + \frac{1}{n} 1 1^T H^{(t)} W^{(t,3)} + H^{(t)} W^{(t,4+j)} \]

\[H^{(t+1)} = \begin{bmatrix} H_{1}^{(t+1)} & H_{2}^{(t+1)} \end{bmatrix} \]

\[O_i = \text{SoftMax}(\theta, H_i^{(T)}) , \]

where \(O_{i,c} = \frac{e^{H_i^{(T)} \theta_c}}{\sum_a e^{H_i^{(T)} \theta_a}} \) and \(\theta \in \mathbb{R}^{d_H \times C} \) where \(C \) is the number of classes

\[\mathcal{L} = \sum_i \inf_{\sigma \in \Pi_C} - \log(O_{i,\sigma(y_i)}) \]

where \(\Pi_C \) is the set of all permutations over the classes \(C \)
Training data generated from Stochastic Block Model of various parameters

Testing data also generated from Stochastic Model of the same size
Concrete examples of GNN in action: graph matching

- [A Note on Learning Algorithms for Quadratic Assignment with Graph Neural Networks, Alex Nowak, Soledad Villar, Afonso S. Bandeira and Joan Bruna, 2017]

- Architecture

\[
\begin{align*}
H^{(0)} &= \begin{bmatrix} \text{degree}_1 & \ldots & \text{degree}_n \end{bmatrix} \\
H_1^{(t+1)} &= \text{ReLU}\left(H^{(t)} W^{(t,1)} + \text{diag}(A1) H^{(t)} W^{(t,2)} + \frac{1}{n} \mathbb{1} \mathbb{1}^T H^{(t)} W^{(t,3)} + H^{(t)} W^{(t,4+j)} \right) \\
H_2^{(t+1)} &= H^{(t)} W^{(t,1)} + \text{diag}(A1) H^{(t)} W^{(t,2)} + \frac{1}{n} \mathbb{1} \mathbb{1}^T H^{(t)} W^{(t,3)} + H^{(t)} W^{(t,4+j)} \\
H^{(t+1)} &= \begin{bmatrix} H_1^{(t+1)} & H_2^{(t+1)} \end{bmatrix}
\end{align*}
\]

Run it on both graphs \(G_A \) and \(G_B \) and then compute

\[
M = \left(H_A^{(T)} \right)^T H_B^{(T)} \in \mathbb{R}^{n \times n}
\]

Then take SoftMax on each row to map from \(G_A \) to \(G_B \)

\[
O_i = \text{SoftMax}(M_{i,\cdot}),
\]

\[
\mathcal{L} = \sum_{i=1}^{n} - \log(O_{i,y_i})
\]
- Trained on Erdos-Renyi + Noise and test on the same
- Trained on Random Regular graphs + Noise and tested on the same
Concrete examples of GNN in action: Quantum Chemistry

 - Input: chemical network with node features in \{H, C, N, O, F\}, and edges of bond types \{single, double, triple, or aromatic\} and also edge distances.
 - Output: estimated chemical properties
 - Training data:

\[
\begin{align*}
H_i^{(t+1)} &= \sum_{j \in N(i)} M_t(\tilde{H}_i^{(t)}, \tilde{H}_j^{(t)}, A_{ij}) \\
\tilde{H}_i^{(t+1)} &= U_t(\tilde{H}_i^{(t)}, H_i^{(t+1)}) \\
O &= R(H^{(T)})
\end{align*}
\]

with the choice of

\[
M_t(H_i^{(t)}, H_j^{(t)}, A_{ij}) = f(W(A_{ij})H_j^{(t)})
\]

\[
R(H^{(T)}) = f_W\left(\sum_i H_i^{(T)}\right)
\]
Trained and tested on benchmark dataset

<table>
<thead>
<tr>
<th>Target</th>
<th>BAML</th>
<th>BOB</th>
<th>CM</th>
<th>ECFP4</th>
<th>HDAD</th>
<th>GC</th>
<th>GG-NN</th>
<th>DTNN</th>
<th>enn-s2s</th>
<th>enn-s2s-ens5</th>
</tr>
</thead>
<tbody>
<tr>
<td>mu</td>
<td>4.34</td>
<td>4.23</td>
<td>4.49</td>
<td>4.82</td>
<td>3.34</td>
<td>0.70</td>
<td>1.22</td>
<td>-</td>
<td>0.30</td>
<td>0.20</td>
</tr>
<tr>
<td>alpha</td>
<td>3.01</td>
<td>2.98</td>
<td>4.33</td>
<td>34.54</td>
<td>1.75</td>
<td>2.27</td>
<td>1.55</td>
<td>-</td>
<td>0.92</td>
<td>0.68</td>
</tr>
<tr>
<td>HOMO</td>
<td>2.20</td>
<td>2.20</td>
<td>3.09</td>
<td>2.89</td>
<td>1.54</td>
<td>1.18</td>
<td>1.17</td>
<td>-</td>
<td>0.99</td>
<td>0.74</td>
</tr>
<tr>
<td>LUMO</td>
<td>2.76</td>
<td>2.74</td>
<td>4.26</td>
<td>3.10</td>
<td>1.96</td>
<td>1.10</td>
<td>1.08</td>
<td>-</td>
<td>0.87</td>
<td>0.65</td>
</tr>
<tr>
<td>gap</td>
<td>3.28</td>
<td>3.41</td>
<td>5.32</td>
<td>3.86</td>
<td>2.49</td>
<td>1.78</td>
<td>1.70</td>
<td>-</td>
<td>1.60</td>
<td>1.23</td>
</tr>
<tr>
<td>R2</td>
<td>3.25</td>
<td>0.80</td>
<td>2.83</td>
<td>90.68</td>
<td>1.35</td>
<td>4.73</td>
<td>3.99</td>
<td>-</td>
<td>0.15</td>
<td>0.14</td>
</tr>
<tr>
<td>ZPVE</td>
<td>3.31</td>
<td>3.40</td>
<td>4.80</td>
<td>241.58</td>
<td>1.91</td>
<td>9.75</td>
<td>2.52</td>
<td>-</td>
<td>1.27</td>
<td>1.10</td>
</tr>
<tr>
<td>U0</td>
<td>1.21</td>
<td>1.43</td>
<td>2.98</td>
<td>85.01</td>
<td>0.58</td>
<td>3.02</td>
<td>0.83</td>
<td>-</td>
<td>0.45</td>
<td>0.33</td>
</tr>
<tr>
<td>U</td>
<td>1.22</td>
<td>1.44</td>
<td>2.99</td>
<td>85.59</td>
<td>0.59</td>
<td>3.16</td>
<td>0.86</td>
<td>-</td>
<td>0.45</td>
<td>0.34</td>
</tr>
<tr>
<td>H</td>
<td>1.22</td>
<td>1.44</td>
<td>2.99</td>
<td>86.21</td>
<td>0.59</td>
<td>3.19</td>
<td>0.81</td>
<td>-</td>
<td>0.39</td>
<td>0.30</td>
</tr>
<tr>
<td>G</td>
<td>1.20</td>
<td>1.42</td>
<td>2.97</td>
<td>78.36</td>
<td>0.59</td>
<td>2.95</td>
<td>0.78</td>
<td>.84^2</td>
<td>0.44</td>
<td>0.34</td>
</tr>
<tr>
<td>Cv</td>
<td>1.64</td>
<td>1.83</td>
<td>2.36</td>
<td>30.29</td>
<td>0.88</td>
<td>1.45</td>
<td>1.19</td>
<td>-</td>
<td>0.80</td>
<td>0.62</td>
</tr>
<tr>
<td>Omega</td>
<td>0.27</td>
<td>0.35</td>
<td>1.32</td>
<td>1.47</td>
<td>0.34</td>
<td>0.32</td>
<td>0.53</td>
<td>-</td>
<td>0.19</td>
<td>0.15</td>
</tr>
<tr>
<td>Average</td>
<td>2.17</td>
<td>2.08</td>
<td>3.37</td>
<td>53.97</td>
<td>1.35</td>
<td>2.59</td>
<td>1.36</td>
<td>-</td>
<td>0.68</td>
<td>0.52</td>
</tr>
</tbody>
</table>
"Classifying Graphs as Images with Convolutional Neural Networks"

Antoine Jean-Pierre Tixier, Giannis Nikolentzos, Polykarpos Meladianos, Michalis Vazirgiannis

- Graph classification (N graphs with n nodes each)
- Graph kernels are
 - slow: N^2 comparisons, each costing n^4 for shortest paths kernels
 - SVM step can take $N^2 \sim N^3$
 - feature learning and classification is separated
 - Kernels tend to capture local structures (to keep complexity small)
- the paper proposes [GraphEmbedding]-[2D-PCA]-[Histogram]-[CNN]

- GNN captures global structure
- end-to-end training
- GNN is faster
<table>
<thead>
<tr>
<th>Dataset</th>
<th>IMDB-B</th>
<th>COLLAB</th>
<th>REDDIT-B</th>
<th>REDDIT-5K</th>
<th>REDDIT-12K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max # vertices</td>
<td>136</td>
<td>492</td>
<td>3782</td>
<td>3648</td>
<td>3782</td>
</tr>
<tr>
<td>Min # vertices</td>
<td>12</td>
<td>32</td>
<td>6</td>
<td>22</td>
<td>2</td>
</tr>
<tr>
<td>Average # vertices</td>
<td>19.77</td>
<td>74.49</td>
<td>429.61</td>
<td>508.50</td>
<td>391.40</td>
</tr>
<tr>
<td>Max # edges</td>
<td>1249</td>
<td>40120</td>
<td>4071</td>
<td>4783</td>
<td>5171</td>
</tr>
<tr>
<td>Min # edges</td>
<td>26</td>
<td>60</td>
<td>4</td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>Average # edges</td>
<td>96.53</td>
<td>2457.78</td>
<td>497.75</td>
<td>594.87</td>
<td>456.89</td>
</tr>
<tr>
<td># graphs</td>
<td>1000</td>
<td>5000</td>
<td>2000</td>
<td>4999</td>
<td>11929</td>
</tr>
<tr>
<td># classes</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>Max class imbalance</td>
<td>1:1</td>
<td>1:3.4</td>
<td>1:1</td>
<td>1:1</td>
<td>1:5</td>
</tr>
</tbody>
</table>
Table 3: 10-fold CV average test set classification accuracy of our proposed method compared to state-of-the-art graph kernels and graph CNN. ± is standard deviation. Best performance per column in **bold**. *indicates stat. sign. at the $p < 0.05$ level (our 2D CNN vs. WL) using the Mann-Whitney U test (https://docs.scipy.org/doc/scipy-0.19.0/reference/generated/scipy.stats.mannwhitneyu.html).

<table>
<thead>
<tr>
<th>Method</th>
<th>Dataset</th>
<th>REDDIT-B (size=2,000; nclasses=2)</th>
<th>REDDIT-5K (4,999;5)</th>
<th>REDDIT-12K (11,929;11)</th>
<th>COLLAB (5,000;3)</th>
<th>IMDB-B (1,000;2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphlet Shervashidze2009</td>
<td></td>
<td>77.26 (± 2.34)</td>
<td>39.75 (± 1.36)</td>
<td>25.98 (± 1.29)</td>
<td>73.42 (± 2.43)</td>
<td>65.40 (± 5.95)</td>
</tr>
<tr>
<td>WL Shervashidze2011</td>
<td></td>
<td>78.52 (± 2.01)</td>
<td>50.77 (± 2.02)</td>
<td>34.57 (± 1.32)</td>
<td>77.82* (± 1.45)</td>
<td>71.60 (± 5.16)</td>
</tr>
<tr>
<td>Deep GK Yanardag2015</td>
<td></td>
<td>78.04 (± 0.39)</td>
<td>41.27 (± 0.18)</td>
<td>32.22 (± 0.10)</td>
<td>73.09 (± 0.25)</td>
<td>66.96 (± 0.56)</td>
</tr>
<tr>
<td>PSCN $k = 10$ Niepert2016</td>
<td></td>
<td>86.30 (± 1.58)</td>
<td>49.10 (± 0.70)</td>
<td>41.32 (± 0.42)</td>
<td>72.60 (± 2.15)</td>
<td>71.00 (± 2.29)</td>
</tr>
<tr>
<td>2D CNN (our method)</td>
<td></td>
<td>89.12* (± 1.70)</td>
<td>52.11 (± 2.24)</td>
<td>48.13* (± 1.47)</td>
<td>70.28 (± 1.21)</td>
<td>70.40 (± 3.85)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size, average (# nodes, # edges)</th>
<th>REDDIT-B</th>
<th>REDDIT-5K</th>
<th>REDDIT-12K</th>
<th>COLLAB</th>
<th>IMDB-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input shapes (for our approach)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graphlet Shervashidze2009</td>
<td>551</td>
<td>5,046</td>
<td>12,208</td>
<td>3,238</td>
<td>275</td>
</tr>
<tr>
<td>WL Shervashidze2011</td>
<td>645</td>
<td>5,087</td>
<td>20,392</td>
<td>1,579</td>
<td>23</td>
</tr>
<tr>
<td>2D CNN (our approach)</td>
<td>6</td>
<td>16</td>
<td>52</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 4: Runtimes in seconds, rounded to the nearest integer. For the graph kernel baselines, time necessary to populate the Kernel matrix (8-thread 3.4GHz CPU). For our model, time per epoch (Titan Xp GPU).
"Graph Attention Networks"

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Bengio

Node classification (semi-supervised learning)

\[
\alpha_{ij} = \frac{\exp \left(\mathbf{a}^T [\mathbf{W} \vec{h}_i || \mathbf{W} \vec{h}_j] \right)}{\sum_{k \in \mathcal{N}_i} \exp \left(\mathbf{a}^T [\mathbf{W} \vec{h}_i || \mathbf{W} \vec{h}_k] \right)}
\]

\[
\vec{h}_i' = \sigma \left(\sum_{j \in \mathcal{N}_i} \alpha_{ij} \mathbf{W} \vec{h}_j \right)
\]

\[
\vec{h}_i' = \prod_{k=1}^{K} \sigma \left(\sum_{j \in \mathcal{N}_i} \alpha_{ij}^k \mathbf{W}^k \vec{h}_j \right)
\]

\[
\vec{h}_i' = \sigma \left(\frac{1}{K} \sum_{k=1}^{K} \sum_{j \in \mathcal{N}_i} \alpha_{ij}^k \mathbf{W}^k \vec{h}_j \right)
\]
<table>
<thead>
<tr>
<th>Method</th>
<th>Cora</th>
<th>Citeseer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLP</td>
<td>55.1%</td>
<td>46.5%</td>
</tr>
<tr>
<td>ManiReg (Belkin et al., 2006)</td>
<td>59.5%</td>
<td>60.1%</td>
</tr>
<tr>
<td>SemiEmb (Weston et al., 2012)</td>
<td>59.0%</td>
<td>59.6%</td>
</tr>
<tr>
<td>LP (Zhu et al., 2003)</td>
<td>68.0%</td>
<td>45.3%</td>
</tr>
<tr>
<td>DeepWalk (Perozzi et al., 2014)</td>
<td>67.2%</td>
<td>43.2%</td>
</tr>
<tr>
<td>ICA (Lu & Getoor, 2003)</td>
<td>75.1%</td>
<td>69.1%</td>
</tr>
<tr>
<td>Planetoid (Yang et al., 2016)</td>
<td>75.7%</td>
<td>64.7%</td>
</tr>
<tr>
<td>Chebyshev (Defferrard et al., 2016)</td>
<td>81.2%</td>
<td>69.8%</td>
</tr>
<tr>
<td>GCN (Kipf & Welling, 2017)</td>
<td>81.5%</td>
<td>70.3%</td>
</tr>
<tr>
<td>GAT (ours)</td>
<td>83.3%</td>
<td>74.0%</td>
</tr>
<tr>
<td>improvement w.r.t GCN</td>
<td>1.8%</td>
<td>3.7%</td>
</tr>
</tbody>
</table>
we generate a subgraph P of 20 nodes with a SBM $q = 0.5$, and the signal on P is generated with a uniform random distribution with a vocabulary of size 3, i.e. $\{0, 1, 2\}$.

Larger graphs G_k are composed of 10 communities with sizes randomly generated between 15 and 25. The SBM of each community is $p = 0.5$. The value of q, which acts as the noise level, is 0.1, unless otherwise specified. Finally, the signal on G_k is also randomly generated between $\{0, 1, 2\}$.
architecture

\[h_{i}^{\ell+1} = f_{G-GCNN}^{\ell}(h_{i}^{\ell}, \{ h_{j}^{\ell} : j \to i \}) = \text{ReLU} \left(U^{\ell} h_{i}^{\ell} + \sum_{j \to i} \eta_{ij} \odot V^{\ell} h_{j}^{\ell} \right) \]

\[h_{i}^{\ell+1} = f^{\ell}(h_{i}^{\ell}, \{ h_{j}^{\ell} : j \to i \}) + h_{i}^{\ell}. \]
performance

supervised learning
"Graph Partition Neural Networks for Semi-Supervised Classification"

standard graph neural network
 ▶ could take long time to propagate (for a line graph n^2 messages sent)

proposed GPNN

Algorithm 1 Graph Partition Propagation Schedule.

1: **Input:** K subgraphs $\{S_k\}_{k=1}^K$, cut S_0, outer propagation step limit T, intra-subgraph and inter-subgraph propagation step limits T_S and T_C.
2: **for** $t = 1, \ldots, T$ **do**
3: **for all** $k \in \{1, \ldots, K\}$ **do in parallel**
4: Call **SYNC**PROP within subgraph S_k for T_S steps.
5: Call **SYNC**PROP within cut S_0 for T_C steps.
6: **function** **SYNC**PROP
7: Compute & send messages as in Eq. (1)
8: Aggregate messages as in Eq. (2)
9: Update states as in Eq. (3)
Performance

<table>
<thead>
<tr>
<th>Method</th>
<th>(Source)</th>
<th>Citeseer</th>
<th>Cora</th>
<th>Pubmed</th>
<th>NELL</th>
<th>10%</th>
<th>1%</th>
<th>0.1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feat</td>
<td>(Yang et al., 2016)</td>
<td>57.2</td>
<td>57.4</td>
<td>69.8</td>
<td>62.1</td>
<td>40.4</td>
<td>21.7</td>
<td></td>
</tr>
<tr>
<td>ManiReg</td>
<td>(Belkin et al., 2006)</td>
<td>60.1</td>
<td>59.5</td>
<td>70.7</td>
<td>63.4</td>
<td>41.3</td>
<td>21.8</td>
<td></td>
</tr>
<tr>
<td>SemiEmb</td>
<td>(Weston et al., 2012)</td>
<td>59.6</td>
<td>59.0</td>
<td>71.1</td>
<td>65.4</td>
<td>43.8</td>
<td>26.7</td>
<td></td>
</tr>
<tr>
<td>LP</td>
<td>(Zhu et al., 2003)</td>
<td>45.3</td>
<td>68.0</td>
<td>63.0</td>
<td>71.4</td>
<td>44.8</td>
<td>26.5</td>
<td></td>
</tr>
<tr>
<td>DeepWalk</td>
<td>(Perozzi et al., 2014)</td>
<td>43.2</td>
<td>67.2</td>
<td>65.3</td>
<td>79.5</td>
<td>72.5</td>
<td>58.1</td>
<td></td>
</tr>
<tr>
<td>ICA</td>
<td>(Lu & Getoor, 2003)</td>
<td>69.1</td>
<td>75.1</td>
<td>73.9</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Planetoid (Transductive)</td>
<td>(Yang et al., 2016)</td>
<td>64.9</td>
<td>75.7</td>
<td>75.7</td>
<td>84.5</td>
<td>75.7</td>
<td>61.9</td>
<td></td>
</tr>
<tr>
<td>Planetoid (Inductive)</td>
<td>(Yang et al., 2016)</td>
<td>64.7</td>
<td>61.2</td>
<td>77.2</td>
<td>70.2</td>
<td>59.8</td>
<td>45.4</td>
<td></td>
</tr>
<tr>
<td>GCN</td>
<td>(Kipf & Welling, 2017)</td>
<td>70.3</td>
<td>81.5</td>
<td>79.0</td>
<td>†83.0</td>
<td>†67.0</td>
<td>†54.2</td>
<td></td>
</tr>
<tr>
<td>GGNN*</td>
<td>(Li et al., 2016)</td>
<td>68.1</td>
<td>77.9</td>
<td>77.2</td>
<td>84.6</td>
<td>66.2</td>
<td>59.1</td>
<td></td>
</tr>
<tr>
<td>GPNN</td>
<td>(ours)</td>
<td>69.7</td>
<td>81.9</td>
<td>79.2</td>
<td>83.7</td>
<td>74.6</td>
<td>63.1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th></th>
<th>Citeseer</th>
<th>Cora</th>
<th>Pubmed</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCN†</td>
<td>(Kipf & Welling, 2017)</td>
<td>68.7 ± 2.0</td>
<td>80.4 ± 2.8</td>
<td>77.5 ± 2.1</td>
</tr>
<tr>
<td>GGNN*†</td>
<td>(Li et al., 2016)</td>
<td>66.3 ± 2.0</td>
<td>78.9 ± 2.6</td>
<td>74.7 ± 2.8</td>
</tr>
<tr>
<td>GPNN</td>
<td></td>
<td>68.6 ± 1.7</td>
<td>79.9 ± 2.4</td>
<td>76.1 ± 2.0</td>
</tr>
</tbody>
</table>
"GraphGAN: Generating Graphs via Random Walks"

generate sibling graphs, which have similar properties yet are not exact replicas of the original graph

challenges

- handle discrete objects
- in a typical setting one has to learn from a single graph
- any model operating on a graph necessarily has to be permutation invariant

![GraphGAN examples](image)

(a) Original graph
(b) Sibling graph
(c) Degree distribution comparison
"SPECREDNET: SPECTRAL CLUSTERING USING DEEP NEURAL NETWORKS"
GNN with edge features

- original GCN Forward Pass:
 - $H^{(0)} = X$
 - Repeat for $t = 1, 2, \ldots, T$
 - $\tilde{H}^{(t)} = PH^{(t-1)}$, with $P = D^{-1}A$
 - $H^{(t)} = \text{ReLU}(\tilde{H}^{(t)}W^{(t)})$
 - SoftMax($H^{(T)}W^{(T+1)}$)

 $$H_i^{(t+1)} = \text{ReLU}(\frac{1}{d_i} \sum_{j \in N(i)} H_j^{(t)}W^{(t+1)})$$

- edge-feature $\{F_{ij}\}$ GCN Forward Pass:
 - $H^{(0)} = X$
 - Define $F_i = \sum_{j \in N(i)} F_{ij}$
 - Let $F = [F_1; F_2; \ldots; F_n] \in \mathbb{R}^{n \times d_F}$
 - Repeat for $t = 1, 2, \ldots, T$
 - $\tilde{H}^{(t)} = PH^{(t-1)}$, with $P = D^{-1}A$
 - $H^{(t)} = \text{ReLU}(\tilde{H}^{(t)}W^{(t)} + F\tilde{W}^{(t)})$
 - SoftMax($H^{(T)}W^{(T+1)} + F\tilde{W}^{(T+1)}$)

 $$H_i^{(t+1)} = \text{ReLU}(\frac{1}{d_i} \sum_{j \in N(i)} \{H_j^{(t)}W^{(t+1)} + F_{ij}\tilde{W}^{(t+1)}\})$$

supervised learning