5. Graph Convolutional Neural Network

supervised learning

5-1

What is a graph convolutional neural network(GCNN)?

@ Consider a machine learning problem with graph data
@ Type 1. Graph classification
» input: {(G1(V1,E1, X1,Z1), Y1), -+, (G1(Viu, Eny Zy X)), V) }
n samples of graphs with nodes V;, edges E;, node features X;,
edge weights Z;, graph label Y,
» goal: find f (Gi(Vi, E;, Xi, Z:)) = Y to predict the graph label
@ Type 2. Semi-supervised node classification
» input: Single graph G(V, E), labeled nodes {(X;, Y1), ..., (Xz, Y1)},
unlabeled nodes {X+1,...,X,}
> goal: find a function fy(G, X1.,) = 1., to predict the node label
@ Type 3. Unsupervised node embedding (graph auto-encoder)
» input: Single graph G(V, E) .
» goal: find an encoder fi(G) = X,., and a decoder gw(X,.,) = G to
predict the edges
@ Main challenge: graphs change in size and connections, and it is
not clear how to input it to a neural network, as opposed to typical
datasets that are set of fixed size real-valued vectors.

supervised learning 5-2

Examples of practical problems tackled with GCNN

@ Type 1. supervised classification of molecular network for drug
discovery

OH

T

Hir

Hiy

supervised learning

Examples of practical problems tackled with GCNN

@ Type 2. semisupervised classification of documents in citation
network

supervised learning

5-4

Examples of practical problems tackled with GCNN

@ Type 3. unsupervised link prediction on knowledge graph

Michelle
Obama

supervised learning

5-5

Examples of (practical?) problems we can tackle

@ Example 1. Detecting clusters (exponential but groundtruth
available)
> Input: {G,(V;, E))},, {Y: = O}, {Gi(Vi, E;) i2£n+l’ {vi= 1}1‘22n+1
one set of samples generated from Erdos-Renyi graph, and another
set from Stochastic Block Model

» Goal: classify a graph whether it is from ER or SBM
» Research question

*
*
*

*
*

which graph neural network architecture/loss should we use?

which parameters for ER and SBM should we use?

does the architecture scale? can we train on small graphs and test on
large graphs?

is it robust? can we train on one parameters and test it on another?
how does it compare against other (non-neural network) methods that
use the knowledge of SBM explicitly?

supervised learning 5-6

Examples of (practical?) problems we can tackle

@ Example 2. estimating minimum spanning tree (polynomial)
> Input: {Gi(Vi, Ei, Z)) Yoy, {Yi}i,

i=11
generate weighted graphs, and corresponding value of minimum
spanning trees
» Goal: estimate the value of the minimum spanning tree

» Research question

* which graph neural network architecture/loss should we use?

* which input graphs should we use? (random graph with random
weights is not good)

* does the architecture scale? can we train on small graphs and test on
large graphs?

* s it robust? can we train on one type of graphs/weights and test it on
another?

* how does it compare against the exact algorithm?

supervised learning 5-7

Examples of (practical?) problems we can tackle

@ Example 3. estimating PageRank scores (polynomial)
> Input: {Gi(V;, Ei)}iy, {Yidie,
generate directed graphs, and corresponding pagerank scores for
all nodes

» Goal: estimate the pagerank score
» Research question

*
*

*

which graph neural network architecture/loss should we use?

which input graphs should we use? (random graph is not good,
perhaps preferential attachment graph is better)

does the architecture scale? can we train on small graphs and test on
large graphs?

is it robust? can we train on one type of graphs/weights and test it on
another?

how does it compare against the exact algorithm?

supervised learning 5-8

Examples of (practical?) problems we can tackle

@ Example 4. detecting Eulerian cycle (polynomial)
> Input: {Gi(Vi, Eq) Yy, {Yii,
generate directed graphs, and label it as Eulerian or not
» Goal: detect Eulerian graphs
» Research question
* which graph neural network architecture/loss should we use?
* which input graphs should we use?
* does the architecture scale? can we train on small graphs and test on
large graphs?
* s it robust? can we train on one type of graphs/weights and test it on
another?
* how does it compare against the exact algorithm?

supervised learning 5-9

Examples of (practical?) problems we can tackle

@ Example 5. detecting Hamiltonian cycle (exponential)
> Input: {G;(Vi, E)) Yoy, {Yidi
generate directed graphs, and label it as Hamiltonian or not
» Goal: detect Hamiltonian graphs
» Research question
* How do we find the labels of the training examples??
* which graph neural network architecture/loss should we use?
* which input graphs should we use?
* does the architecture scale? can we train on small graphs and test on
large graphs?
is it robust? can we train on one type of graphs/weights and test it on
another?
* how does it compare against other heuristics?

*

supervised learning 5-10

Examples of (practical?) problems we can tackle

@ Example 6. finding maximum cut (exponential)
» Input: {Gi(V;, E;, Z) Y, {Yi},

=1
generate weighted undirected graphs, and label it with its maximum
cut
» Goal: estimate max cut

» Research question

* How do we find the labels of the training examples??

* which graph neural network architecture/loss should we use?

* which input graphs should we use?

* does the architecture scale? can we train on small graphs and test on
large graphs?

is it robust? can we train on one type of graphs/weights and test it on
another?

* how does it compare against other heuristics?

*

supervised learning 5-11

Examples of (practical?) problems we can tackle

@ Example 7. finding minimum cut (polynomial)
> Input: {Gi(V;, Ei, Z)) }y, {Yi}i,
generate weighted undirected graphs, and label it with its minimum

cut

» Goal: estimate min cut
» Research question

*
*
*

*

which graph neural network architecture/loss should we use?

which input graphs should we use?

does the architecture scale? can we train on small graphs and test on
large graphs?

is it robust? can we train on one type of graphs/weights and test it on
another?

how does it compare against exact algorithm?

supervised learning 5-12

Examples of (practical?) problems we can tackle

@ Example 8. finding max-weight matching (polynomial)
> Input: {Gi(V;, Ei, Z)) }y, {Yi}i,
generate weighted undirected graphs, and label it with its edges
that are matching

» Goal: estimate the set of edges in the matching
» Research question

*
*
*

*

which graph neural network architecture should we use?

which input graphs should we use?

does the architecture scale? can we train on small graphs and test on
large graphs?

is it robust? can we train on one type of graphs/weights and test it on
another?

how does it compare against exact algorithm?

supervised learning 5-13

Examples of (practical?) problems we can tackle

@ Example 9. graph coloring (exponential)
» Input: G(V,E),
» Goal: for one given graph, learn the coloring of nhodes such that
adjacent nodes have different colors.
» Research question
* which graph neural network architecture should we use?
* which loss function should we use?

supervised learning

5-14

Examples of (practical?) problems we can tackle

@ Example 10. estimate shortest paths (polynomial)
> |nput: {Gl(‘/“ E;, Zi)}; {Yl},
set of directed graphs with a single source and single target with
distances on the edges, labeled by the length of the shortest path

» Goal: estimate the shortest path length
» Research question

*
*
*

*

which graph neural network architecture should we use?

which input graphs should we use?

does the architecture scale? can we train on small graphs and test on
large graphs?

is it robust? can we train on one type of graphs/weights and test it on
another?

how does it compare against exact algorithm?

supervised learning 5-15

Examples of (practical?) problems we can tackle

@ Example 11. semi-supervised learning with stochastic block
models (exponential)
» Input: G(V,E,X), Y,
generate one single graph from a stochastic block model, so that
we know the labels of all the nodes
generate multi-dimensional features X; for each node i from some
distribution conditioned on the true label, e.g. X; ~ N(uy,, v,)
reveal some of the labels of the nodes, perhaps 3% of the nodes
» Goal: find the labels of all the nodes
» Research question
* which graph neural network architecture should we use?
* does the architecture scale? can we train on small graphs and test on
large graphs?
* s it robust? can we train on one type of graphs/weights and test it on
another?

supervised learning 5-16

Examples of (practical?) problems we can tackle

@ Example 12. semi-supervised learning on citation networks (?)
» Input: G(V,E,X), Y.,
use the benchmark citation network datasets from
https://lings.soe.ucsc.edu/node/236 called CiteSeer, CORA, and
PubMed
» Goal: find the labels of all the nodes
» Research question
* which graph neural network architecture should we use?
* does the architecture scale? can we train on small graphs and test on
large graphs?
* s it robust? can we train on one type of graphs/weights and test it on
another?
* Can we beat the state-of-the-art?

supervised learning 5-17

Examples of (practical?) problems we can tackle

@ Example 13. supervised learning on molecular network (?)
> lnpUt: {Gi(Viininin)}! {Yl}
use the benchmark citation network datasets
» Goal: classify the graph
» Research question
* which graph neural network architecture should we use?
* does the architecture scale? can we train on small graphs and test on
large graphs?
* s it robust? can we train on one type of graphs/weights and test it on
another?
* Can we beat the state-of-the-art?

supervised learning 5-18

Concrete examples of GNN in action: citation network

@ Citation Network Benchmark Dataset

Table: Citation Network Dataset
Dataset Nodes Edges Classes Features Labeled nodes

CiteSeer 3,327 4,732 6 3,703 120
Cora 2,708 5,429 7 1,433 140
PubMed 19,717 44,328 3 500 60

supervised learning 5-19

Graph Convolutional Network (GCN) by Kipf and
Welling [2017 ICLR]

@ Input:
» graph: G(V,E) or equivalently A € {0, 1}"*"
» node features: X € R"™*¢
» labeled nodes: {Y:}icr

@ Output:
» estimated classes: Z = fiy(X,A) € R

@ goal: graph-based semisupervised learning

@ How would you attack this problem?

supervised learning 5-20

Leader board

Table 2: Classification accuracy in percent with a fixed split of data from (Yang et al., 2016).

Input Method Citeseer Cora PubMed

gl oL Singlelayer Perceptron 57.2 574 69.8

LARRs Multilayer Perceptron 64.0 57.5 71.4

;yf,$f+l’ T-SVM (Joachims, 1999) 64.0 57.5 62.2

y{“, G DeepWalk (Perozzi et al., 2014) 43.2 67.2 65.3
LP (Zhu et al., 2003) 453 68.0 63.0
ICA (Lu & Getoor, 2003) 69.1 75.1 73.9
ManiReg (Belkin et al., 2006) 60.1 59.5 70.7
SemiEmb (Weston et al., 2012) 59.6 59.0 71.1
DCNN (Atwood & Towsley, 2016) 76.8 73.0
Planetoid (Yang et al., 2016) 64.7 75.7 77.2

ok U G MoNet (Monti et al., 2016) 81.7 78.8

braty G Graph-CNN (Such et al., 2017) 76.3
DynamicFilter (Verma et al., 2017) 81.6 79.0
Bootstrap (Buchnik & Cohen, 2017) 53.6 78.4 78.8
GCN (Kipf & Welling, 2016) 70.3 81.5 79.0
GLN 70.9+£.05 81.2+.05 78.9L.05
AGNN (this paper) 71.7+.08 82.6+.09 79.9+.07

supervised learning 5-21

@ GCN:
[Input]-[Propagation]-[Perceptron]-[Propagation]-[Perceptron]- - - -
-[SoftMax]-[Output]

@ Forward Pass:

> H(O) =X

» Repeatfortr=1,2,...,T
* HY = pHY withP=D"'A
* H® = ReLU(H HOW 2

> SoftMax(HTWw(T+1)

@ Training:
> Let Z = fi(X, A)
» the weights W), w®, ... w(T+1) are trained on the cross entropy
loss
d,
Lyay,(W)==> > ¥;Inz;
i€[n] j=1

supervised learning 5-22

@ Why cross entropy loss?
it measures distance between Y; and 7;, e.g.
- Ej Y[jll’lZ,:,’ =0ifY; = [1,0,0] and z; = [1,0, 0], and
— Ej Y,-janiJ- = —1n(1/3) if Y; = [1,0,0] and z; = [1/3, 1/3, 1/3]
@ What is GCN doing?
summarizing the neighborhood and extracting sufficient statistics
@ Naive approach: store all neighborhood information
» computationally intractable
» memory blows up
» varying dimensions
@ as a solution GCN summarizes the local neighborhood by local
averaging in propagation layer, and attempts to find the sufficient
statistics via perceptron layer, recursively.

supervised learning 5-23

@ some interpretation of the learned embeddings:

Citeseer

Cora

Case_Based

Genetic_Algorithms -0.08

Neural_Networks -0.16
-0.24

-0.06 Probabilistic_Methods -0.252-0.339-0.33!
-0.32
o Reinforcement_Learning 019
-0.40
-0.175 -0.157 0.041 -0.141 —018
_o24 Rule_Learning -0.48
Hel -0.154 0.046 ~030 Theory -0.56
Agents Al DB IR ML HCI CB GA NN PM RL RuleTheory
Figure: Average influence from a column class to a row class
supervised learning

5-24

PubMed

tes Mellitus, Experimental

Diabetes Mellitus Type 1

Diabetes Mellitus Type 2

-0.168 -0.109

Exp Typel Type2

Figure: Average influence from a column class to a row class

supervised learning 5-25

Other approaches for graph-based semi-supervised
learning

@ main question is "how do you encode the graph information into a
learning?"

@ graph as a regularizer

Lxay, (W) = D> efw(X:), Y+ > fw(X) — fw(Xo)ll?

icL (j.k)EE
— ————

‘CSUPCWiSCd (XL ’ 3) Lregu]arizer (A)X)

@ this is a natural parametric approach that can be learned via
back-propagation [“Deep Learning via Semi-supervised
embedding " by Weston et al. 2012]

@ two parts in the loss

@ encode the graph as a part of the loss, forcing nearby nodes to
have similar labels (or embeddings)

supervised learning 5-26

@ There are earlier regularization approaches that are
non-parametric

Lxax(f) = DL, Y)+x Y Byllf() —f(k)IP?

i€L (j,k)EE
————

Lsupervised (YL) [aregularizer (A ’X)

with B = e~ i X))*/”,
@ This is a very popular approach known as Label Propagation

[“Learning from labeled and unlabeled data with label
propagation”, X Zhu, Z Ghahramani, 2002]

@ admits a closed form solution for A — 0

supervised learning 5-27

@ we force true labels on the known nodes: f(i) = ¥;, fori € L
@ build a similarity matrix B with B;; = e=(i=X)*/¢’
@ build a graph Laplacian A = diag(B1) — B
@ and consider binary classification where
f=UQ),....f(m)] €{0,1}"

@ then the loss from previous slide becomes
minimizey f TaAf

subject to f(L) = Y;.

supervised learning 5-28

@ This gives
A Ay
AyL Ayu

L= fo

L
fu
and we can minimize L(fy) = ffApfy + 2fF Arufu + f Avufu
with f = AyjAufs
@ as it admits this closed-form solution, it is very popular, but ...

supervised learning 5-29

Concrete examples of GNN in action: community
detection
@ Input: graph G(V,E) or A
@ Output: Z = fiy(A) € R™** clustering of the node sinto k classes
°
@ Spectral clustering:
consider binary classification for now and let Z; € {—1,+1}
minimize ZAij(l - Z,Z;)
ij
minimizes the cut between two classes
@ and this is Zinj(l —7Zj) = D; — > AiZiZ;, and hence
minimize Y ZL;Zj = Z'LZ,
ij
where L = D — A is the graph Laplacian of G, D; is the degree of
node i, D = diag([Dy, - .., Dy])

supervised learning 5-30

@ We want to solve
minimize Z'LZ
subjectto Z; € {+1,—1}
@ which is hard as it is a combinatorial problem. A common heuristic
is to relax the constraint and solve

minimize Z'LZ

subject to ||Z||* = n.

@ however, this has a trivial solution, Z; = 1 for all i, that achieves the
minimum. Instead, we add a constraint that Z’s have to be
orthogonal to 1

minimize Z'LZ
subjectto },Z; =0

@ This has a beautiful analytical solution now:

supervised learning 5-31

@ GNN approach to community detection

[Community Detection with Graph Neural Networks, Joan Bruna,
Xiang Li, 2017]
@ Architecture

HO = [degree. degreen]
1 .
H'Y = ReLU (H(’)W(”l) + diag(A1)HOW"? 1 ﬁILILTH(’)W(”” + H(’)W("“ﬂ))
H§T+1) _ H(’)w(hl) +diag(AIL)H(’)W(”2) + lﬂlTH(f)W(’ﬁ) +H(T)W(f:4+j)
n
(+1) +1 +1
N
- (T)
O0; = SoftMax(6,H; "),
(1o .
where 0;. = —“—— and 6 € R%*¢ where C is the number of
Za eHi 8,
classes
L= inf —log(,
2 ok = 10e(0io)

supenwtrdreaflings the set of all nermutations over the classes C 5-32

@ Training data generated from Stochastic Block Model of various

parameters
@ Testing data also generated from Stochastic Model of the same
size
variable A =1) da variable
o7 + GNN_overlap b = " + GNN_overlap
-+ BH_overlap ol 075 [~ - BH_overlap
Ls_overlap yZ N " Lﬁ??f:f:
pm_overlap ¥ \ pm_overlap
E‘) 0 gJ’ \\
g { s _“
025 // 025
.-'/ i
3 a-b 6] a-b 3

supervised learning 5-33

Concrete examples of GNN in action: graph matching
@ [A Note on Learning Algorithms for Quadratic Assignment with
Graph Neural Networks, Alex Nowak, Soledad Villar, Afonso S.
Bandeira and Joan Bruna, 2017]
@ Architecture

HO = [degree. degreen]
H™ = ReLU (H(’)W("l) + diag(AL)HO W 4 %ILILTH(’)W("” - H(’)W("““)>
HTY = HOWOD 4 diag(AL)HO WD 4 %ILILTH(’)WW) + HOW A
HOU = [H)
run it on both graphs G4 and G and then compute

M= (HgT))THéT) € R"™" Then take SoftMax on each row to map

from G4 to Gy
O; = SoftMax(M,.),

i—1

supervised learning 5-34

@ Trained on Erdos-Renyi + Noise and test on the same

@ Trained on Random Regular graphs + Noise and tested on the
same

ErdosRenyi Graph Model Random Regular Graph Model

E

=
Recovery Rate

Recovery Rate

—$— SOP

—4— LowRankAlignik=4)
J e 0.0
0.00 0.01 0.0 0.03 0.04 0.05 0.00 0oL 0.02 [E) 0.04 0.05

supervised learning 5-35

Concrete examples of GNN in action: Quantum
Chemistry

@ [Neural Message Passing for Quantum Chemistry, Gilmer,
Schoenholz, Riley, Vinyals, Dahl, 2017]

» Input: chemical network with node features in {H, C, N, O, F }, and
edges of bond types {single,double, triple, or aromatic} and also
edge distances.

» Output: estimated chemical properties

» Training data:

Hi(z+l) _ ZM’(H W Ay)

JEN(i)
}NI'(HH) = U[(i 7 l([+l))

i

0 = R(H")

with the choice of
M,(H-“) H,A;) —fw(AU)H“)

R(H" Z H

supervised learning 5-36

@ Trained and tested on benchmark dataset

Neural M

Passing for Quantum Chemistry

Table 2. Comparison of Previous A

roaches (left) with MPNN

(middle) and our methods (right)

Target BAML BOB CM ECFP4 HDAD | GC GG-NN DTNN | enn-s2s enn-s2s-ensS
mu 4.34 423 449 482 334 0.70 1.22 - 0.30 0.20
alpha 3.01 298 433 3454 1.75 227 1.55 - 0.92 0.68
HOMO 220 220 3.09 289 1.54 118 117 - 0.99 0.74
LUMO 276 274 426 3.10 1.96 1.10 1.08 - 0.87 0.65
gap 3.28 341 532 386 249 1.78 1.70 - 1.60 1.23
R2 3.25 0.80 2.83 90.68 1.35 473 3.99 - 0.15 0.14
ZPVE 331 340 480 24158 191 9.75 252 - 1.27 1.10
uo 1.21 143 298 8501 0.58 3.02 0.83 - 045 0.33
U 1.22 144 299 8559 059 3.16 086 - 045 0.34
H 1.22 144 299 B86.21 0.59 3.19 0.81 - 0.39 0.30
G 1.20 142 297 7836 0.59 295 0.78 847 0.44 0.34
Cv 1.64 1.83 236 3029 0388 145 1.19 - 0.80 0.62
Omega 027 035 132 147 0.34 0.32 0.53 - 0.19 0.15
Average 2.17 208 337 5397 1.35 259 136 - 0.68 0.52

supervised learning

5-37

ICLR 2018

https://openreview.net/group?id=ICLR.cc/2018/Conference
@ "Classifying Graphs as Images with Convolutional Neural

Networks"
@ Antoine Jean-Pierre Tixier, Giannis Nikolentzos, Polykarpos
Meladianos, Michalis Vazirgiannis
» Graph classification (N graphs with n nodes each)
» graph kernels are
* slow: N? comparisons, each costing n* for shortest paths kernels
* SVM step can take N*> ~ N?
* feature learning and classification is separated
* Kernels tend to capture local structures (to keep complexity small)
» the paper proposes
[GraphEmbedding]-[2D-PCA]-[Histogram]-[CNN]

BE_E_

i

* GNN captures global structure
* end-to-end training

supervised Iea?nir%NN is faster 5-38

Dataset IMDB-B COLLAB REDDIT-B REDDIT-5K REDDIT-12K
Max # vertices 136 492 3782 3648 3782
Min # vertices 12 32 6 22 2
Average # vertices 19.77 74.49 429.61 508.50 391.40
Max # edges 1249 40120 4071 4783 5171

Min # edges 26 60 4 21 1
Average # edges 96.53 2457.78 497.75 594.87 456.89

graphs 1000 5000 2000 4999 11929

classes 2 3 2 5 11

Max class imbalance 1:1 1:3.4 1:1 1:1 1:5

supervised learning

5-39

Table 3: 10-fold CV average test set classification accuracy of our proposed method compared to state-of-the-
art graph kernels and graph CNN. = is standard deviation. Best performance per column in bold. *indicates
stat. sign. at the p < 0.05 level (our 2D CNN vs. WL) using the Mann-Whitney U test (hetps: //docs. seiny. oza/

doc/scipy-0.19.0/reference/generated/scipy.stats. mannwhitneyu, html),

Dataset REDDIT-B
Method (size=2,000;nclasses=2)

REDDIT-5K

(4,999;5)

REDDIT-12K
(11,928;11)

COLLAB
(5,000:3)

IMDB-B
(1,000:2)

Graphlet Shervashidze2009 T1.26 (£ 2.34)
WL Shervashidee2011 78.52 (£ 2.01)
Deep GK vanardag2015 78.04 (£ 0.39)
PSCN k = 10 Nieper2016 | 86.30 (& 1.58)
2D CNN (our method) | 89.12* (4 1.70)

30.75 (= 1.36)
50.77 (£ 2.02)
41.27 (£ 0.18)
49.10 (£ 0.70)
52,11 (£ 2.24)

2598 (£ 1.29)
34.57 (+ 1.32)
32.22 (£ 0.10)
4132 (£ 0.42)
48.13" (+ 1.47)

T342 (£ 243) 6540(=5.95)
77.82° (+ 1.45) 7160 (= 5.16)
73.09 (£ 025) 6696 (+0.56)
7260 (£2.15) 71.00 (£ 2.29)
7028 (£ 121) 70.40 (= 3.85)

REDDIT-B | REDDIT-5K | REDDIT-12K | COLLAB | IMDB-B
Size, average (# nodes, # edges) | 2000, (430,498) | 4999, (509,595) 11929, (391.457) | 5000, (74.2458) | 1000,(20.97)
Input shapes (for our approack) (5,62.62) (2.65.65) (5,73,73) (5,36,36) (53137
Graphlet Shervashidze2009 551 5,046 12,208 3,238 275
WL Shervashidzea01 1 645 5,087 20,392 1,579 23
2D CNN our approach) 5] 16 52 5 1

Table 4: Runtimes in seconds, rounded to the nearest integer. For the graph kernel baselines, time necessary to
populate the Kernel matrix (8-thread 3.4GHz CPU). For our model, time per epoch (Titan Xp GPU).

supervised learning

5-40

@ "Graph Attention Networks"

@ Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana
Romero, Pietro Lio, Yoshua Bengio

@ node classification (semi-supervised learning)

exp (a’f[wﬁk uwh‘j])

Phen, €XP (éT[VVEIHWﬁk])

Qi =

supervised learning 5-41

Transductive

Method Cora Citeseer
MLP 55.1% 46.5%
ManiReg (Belkin et al., 2006) 59.5% 60.1%
SemiEmb (Weston et al., 2012) 59.0% 59.6%
LP (Zhu et al., 2003) 68.0% 45.3%
DeepWalk (Perozzi et al., 2014) 67.2% 43.2%
ICA (Lu & Getoor, 2003) 75.1% 69.1%
Planetoid (Yang et al., 2016) 15.7% 64.7%
Chebyshev (Defferrard et al., 2016) 81.2% 69.8%
GCN (Kipf & Welling, 2017) 81.5% 70.3%
GAT (ours) 833% 74.0%
improvement w.r.t GCN 1.8% 3.7%

supervised learning

5-42

@ "RESIDUAL GATED GRAPH CONVNETS"
@ subgraph matching [in Scarselli et al. (2009)]

@ we generate a subgraph P of 20 nodes with a SBM q = 0.5, and
the signal on P is generated with a uniform random distribution
with a vocabulary of size 3, i.e. {0, 1, 2}.

@ Larger graphs Gk are composed of 10 communities with sizes
randomly generated between 15 and 25. The SBM of each
community is p = 0.5. The value of g, which acts as the noise
level, is 0.1, unless otherwise specified. Finally, the signal on Gk is
also randomly generated between {0, 1, 2}.

supervised learning 5-43

@ architecture

R = fhoom (BE, {RE:5—i}) = RelU (U“hf +Y ;e vfhg)

j—i

REY = fE(RE, {REij—d}) + AL

supervised learning 5-44

@ performance

— Morchesgioni—Teov 0

— Suknboataretal
Gropn 7w, s

Multtayer U t af

Bateh time (sec)

— Marcheggioni—Trow
— Suknbastar ot o)
- Grapn L5

o1 ols ok o2 0% ok ow o 0%
@
a
% w]— r
—— Marcheggiani— Tty
o -
H
f10
— Proposed Graph Conmets N
— Marchepgiani—Titow
». — soktbastart s
e s
- MoltayerLietal
&
T3 4§ & 3§ 3 T3 1§ & 3§ 3§
L L
1
e
§ [provosed Grapn comiters
212 — Marchegoiani=Tiov
£ 7| — sukmmoatoretar
£ 0] - "
— | %] mweses
— s
— sunbsstaret ol a5 { — suknaataretar
. Grapn L1 Gropn LM [Ie—
- Mateyerticto utiayertret ot
3
& e % w0 e oo B B o T =0 L) o w0 we 1o
Bxie Bk B

supervised learning

5-45

@ "Graph Partition Neural Networks for Semi-Supervised

Classification"

@ standard graph neural network
» could take long time to propagate (for a line graph »n> messages

sent)
@ proposed GPNN

Algorithm 1 Graph Partition Propagation Schedule.

1: Input: K subgraphs {Sx|k = 1,..., K'}, cut S, outer propagation step limit 7', intra-subgraph

and inter-subgraph propagation step limits T's and T¢.

2: fort=1,...,Tdo

forall k € {1,..., K} doin parallel
Call SYNCPROP within subgraph Sy, for T's steps.

Call SYNCPROP within cut 8; for T steps.

Compute & send messages as in Eq. (1)
Aggregate messages as in Eq. (2)
Update states as in Eq. (3)

3
4
5
6: function SYNCPrOP
7
8
9

supervised learning

5-46

@ Performance

Method (Source) Citeseer Cora Pubmed NELL
10% 1% 01%

Feat (Yang et al., 2016) 572 574 69.8 62.1 404 217
ManiReg (Belkin et al., 2006) 60.1 595 70.7 634 413 218
SemiEmb (Weston et al., 2012) 59.6 59.0 1.1 654 438 267
Lp (Zhu et al., 2003) 453 68.0 630 714 448 265
DeepWalk (Perozzi et al., 2014) 432 672 65.3 795 725 581
ICA (Lu & Getoor, 2003) 69.1 75.1 73.9 - - -
Planetoid (Transductive) (Yang et al., 2016) 64.9 757 75.7 845 757 619
Planetoid (Inductive) (Yang et al., 2016) 64.7 612 772 702 598 454
GCN (Kipf & Welling, 2017) 70.3 815 79.0 183.0 t67.0 t54.2
GGNN* (Lietal., 2016) 68.1 779 772 846 662 501
GPNN (ours) 69.7 819 792 837 746 631

Method | Citeseer Cora Pubmed

GCN' (Kipf & Welling, 2017) | 68.7 2.0 804+28 775121

GGNN* (Lietal., 2016) 663+20 789+26 747428

GPNN 68.6+17 799+24 76.1+20

supervised learning 5-47

@ "GraphGAN: Generating Graphs via Random Walks"
@ generate sibling graphs, which have similar properties yet are not
exact replicas of the original graph
@ challenges
» handle discrete objects

» in a typical setting one has to learn from a single graph
» any model operating on a graph necessarily has to be permutation

invariant
T . o Citeseer
H 3 % GraphGAN
102 *, + pcseu
5 2 N
< 5 s,
P P 3 .
ol . © 30!
G O
T i 10° R
. 100 10! 10?
4% edge degree
overlap
(a) Original graph (b) Sibling graph (c) Degree distribution comparison

supervised learning 5-48

Generator @ - GraphGAN
architecture G(=z) architecture
sampled L sample
Generator — ©
i Discrimi-
’ nator
—C, /
! Graph 1
i
! 1
— by K]
L I / Py i D...: Dpa.
/
Random
z~ N(0,1 : !
N, L) 3 walk
@ ®
Method Cora-ML CorA CITESEER DBLP PUBMED POLBLOGS
ROC AP ROC AP ROC AP ROC AP ROC AP ROC AP
Adamic/Adar 92.16 8543 9300 8618 B88.69 77.82 91.13 8248 8498 70.14 8543 92.16
DC-SBM 96.03 95.15 98.01 9745 9477 93.13 97.05 9657 96.76 9564 9546 94.93
node2vec 92.19 9176 9852 9836 9529 9458 9641 9636 9649 9597 85.10 83.54
GraphGAN (500K) 94.00 9232 8231 6847 09518 9193 8245 7028 8739 7655 9506 94.61
GraphGAN (100M) 95.19 9524 84.82 8804 96.30 96.89 86.61 8921 9341 9459 9551 94.83
GraphGAN (emb.) 90.29 88.29 8438 79.36 9295 9244 86.59 81.96 9179 89.37 7001 6272
—— GraphGAN --- Input graph === DCSBM —-= VaL-CmrremioN —-— EO-CRITERION
ot Ty s Cora-ML -0.02 | 1.00 |
L * GraphGan | > i _% i
10% by 4 DC-SBM S -0.04 i = 0.75 i
E= I [|
by, e ST 3 050 /
10t A ey i w @ i
a So0.2s5 i
~ B < o T
, - < _o.08 WO W 0o t
10° —— L
o B o Ok 20k 40k 60k 80k 100k k 20k 40k 60k 80k 100k
degree Training iteration Training iteration

(a) Degree distribution

supervised learning

(b) Assortativity over
training iterations

(c) Edge overlap (EO) over
training iterations

5-49

@ "SPECTRALNET: SPECTRAL CLUSTERING USING DEEP
NEURAL NETWORKS"

supervised learning 5-50

GNN with edge features

@ original GCN Forward Pass:

» HO) — x
» Repeatforr=1,2,...,T
* HO = pHU=D | with
P=D"'A
* H® = ReLU(H" W)
» SoftMax(HTW(T+1)

H = ReLU(—
J€N()

1

HY = ReLU(-;

supervised learning

Z H W(’“)

@ edge-feature {F;} GCN
Forward Pass:
» HO —x
Define Fi = 3~ ey Fis
Let F = [Fl;Fz; Fn] S RnXdF
Repeatforr=1,2,...,T
* HO = pHU=D with
P=D"A
* HO —
ReLU(HYW® + FW®)
> SoftMax(HNwT+1) 4
FW(T+D)

v

vy

> {H WD 4wy
' JjEN(i)

5-51

