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What is a graph convolutional neural network(GCNN)?
Consider a machine learning problem with graph data
Type 1. Graph classification

I input: f(G1(V1; E1; X1; Z1); Y1); : : : ; (G1(Vn; En; Zn; Xn); Yn)g
n samples of graphs with nodes Vi, edges Ei, node features X1,
edge weights Z1, graph label Y1

I goal: find fW(Gi(Vi; Ei; Xi; Zi)) = Ŷ to predict the graph label
Type 2. Semi-supervised node classification

I input: Single graph G(V; E), labeled nodes f(X1; Y1); : : : ; (XL; YL)g,
unlabeled nodes fXL+1; : : : ; Xng

I goal: find a function fW(G; X1:n) = Ŷ1:n to predict the node label
Type 3. Unsupervised node embedding (graph auto-encoder)

I input: Single graph G(V; E)
I goal: find an encoder fW(G) = X̂1:n and a decoder gW(X̂1:n) = Ĝ to

predict the edges

Main challenge: graphs change in size and connections, and it is
not clear how to input it to a neural network, as opposed to typical
datasets that are set of fixed size real-valued vectors.
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Examples of practical problems tackled with GCNN

Type 1. supervised classification of molecular network for drug
discovery
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Examples of practical problems tackled with GCNN

Type 2. semisupervised classification of documents in citation
network
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Examples of practical problems tackled with GCNN

Type 3. unsupervised link prediction on knowledge graph
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Examples of (practical?) problems we can tackle

Example 1. Detecting clusters (exponential but groundtruth
available)

I Input: fGi(Vi; Ei)g
n
i=1, fYi = 0gn

i=1, fGi(Vi; Ei)g
2n
i=n+1, fYi = 1g2n

i=n+1
one set of samples generated from Erdos-Renyi graph, and another
set from Stochastic Block Model

I Goal: classify a graph whether it is from ER or SBM
I Research question

F which graph neural network architecture/loss should we use?
F which parameters for ER and SBM should we use?
F does the architecture scale? can we train on small graphs and test on

large graphs?
F is it robust? can we train on one parameters and test it on another?
F how does it compare against other (non-neural network) methods that

use the knowledge of SBM explicitly?
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Examples of (practical?) problems we can tackle

Example 2. estimating minimum spanning tree (polynomial)
I Input: fGi(Vi; Ei; Zi)g

n
i=1, fYig

n
i=1

generate weighted graphs, and corresponding value of minimum
spanning trees

I Goal: estimate the value of the minimum spanning tree
I Research question

F which graph neural network architecture/loss should we use?
F which input graphs should we use? (random graph with random

weights is not good)
F does the architecture scale? can we train on small graphs and test on

large graphs?
F is it robust? can we train on one type of graphs/weights and test it on

another?
F how does it compare against the exact algorithm?
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Examples of (practical?) problems we can tackle

Example 3. estimating PageRank scores (polynomial)
I Input: fGi(Vi; Ei)g

n
i=1, fYig

n
i=1

generate directed graphs, and corresponding pagerank scores for
all nodes

I Goal: estimate the pagerank score
I Research question

F which graph neural network architecture/loss should we use?
F which input graphs should we use? (random graph is not good,

perhaps preferential attachment graph is better)
F does the architecture scale? can we train on small graphs and test on

large graphs?
F is it robust? can we train on one type of graphs/weights and test it on

another?
F how does it compare against the exact algorithm?
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Examples of (practical?) problems we can tackle

Example 4. detecting Eulerian cycle (polynomial)
I Input: fGi(Vi; Ei)g

n
i=1, fYig

n
i=1

generate directed graphs, and label it as Eulerian or not
I Goal: detect Eulerian graphs
I Research question

F which graph neural network architecture/loss should we use?
F which input graphs should we use?
F does the architecture scale? can we train on small graphs and test on

large graphs?
F is it robust? can we train on one type of graphs/weights and test it on

another?
F how does it compare against the exact algorithm?

supervised learning 5-9



Examples of (practical?) problems we can tackle

Example 5. detecting Hamiltonian cycle (exponential)
I Input: fGi(Vi; Ei)g

n
i=1, fYig

n
i=1

generate directed graphs, and label it as Hamiltonian or not
I Goal: detect Hamiltonian graphs
I Research question

F How do we find the labels of the training examples??
F which graph neural network architecture/loss should we use?
F which input graphs should we use?
F does the architecture scale? can we train on small graphs and test on

large graphs?
F is it robust? can we train on one type of graphs/weights and test it on

another?
F how does it compare against other heuristics?
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Examples of (practical?) problems we can tackle

Example 6. finding maximum cut (exponential)
I Input: fGi(Vi; Ei; Zi)g

n
i=1, fYig

n
i=1

generate weighted undirected graphs, and label it with its maximum
cut

I Goal: estimate max cut
I Research question

F How do we find the labels of the training examples??
F which graph neural network architecture/loss should we use?
F which input graphs should we use?
F does the architecture scale? can we train on small graphs and test on

large graphs?
F is it robust? can we train on one type of graphs/weights and test it on

another?
F how does it compare against other heuristics?
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Examples of (practical?) problems we can tackle

Example 7. finding minimum cut (polynomial)
I Input: fGi(Vi; Ei; Zi)g

n
i=1, fYig

n
i=1

generate weighted undirected graphs, and label it with its minimum
cut

I Goal: estimate min cut
I Research question

F which graph neural network architecture/loss should we use?
F which input graphs should we use?
F does the architecture scale? can we train on small graphs and test on

large graphs?
F is it robust? can we train on one type of graphs/weights and test it on

another?
F how does it compare against exact algorithm?
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Examples of (practical?) problems we can tackle

Example 8. finding max-weight matching (polynomial)
I Input: fGi(Vi; Ei; Zi)g

n
i=1, fYig

n
i=1

generate weighted undirected graphs, and label it with its edges
that are matching

I Goal: estimate the set of edges in the matching
I Research question

F which graph neural network architecture should we use?
F which input graphs should we use?
F does the architecture scale? can we train on small graphs and test on

large graphs?
F is it robust? can we train on one type of graphs/weights and test it on

another?
F how does it compare against exact algorithm?

supervised learning 5-13



Examples of (practical?) problems we can tackle

Example 9. graph coloring (exponential)
I Input: G(V; E),
I Goal: for one given graph, learn the coloring of nodes such that

adjacent nodes have different colors.
I Research question

F which graph neural network architecture should we use?
F which loss function should we use?
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Examples of (practical?) problems we can tackle

Example 10. estimate shortest paths (polynomial)
I Input: fGi(Vi; Ei; Zi)g; fYig,

set of directed graphs with a single source and single target with
distances on the edges, labeled by the length of the shortest path

I Goal: estimate the shortest path length
I Research question

F which graph neural network architecture should we use?
F which input graphs should we use?
F does the architecture scale? can we train on small graphs and test on

large graphs?
F is it robust? can we train on one type of graphs/weights and test it on

another?
F how does it compare against exact algorithm?
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Examples of (practical?) problems we can tackle

Example 11. semi-supervised learning with stochastic block
models (exponential)

I Input: G(V; E; X), YL

generate one single graph from a stochastic block model, so that
we know the labels of all the nodes
generate multi-dimensional features Xi for each node i from some
distribution conditioned on the true label, e.g. Xi � N(�Yi ; ΣYi )
reveal some of the labels of the nodes, perhaps 3% of the nodes

I Goal: find the labels of all the nodes
I Research question

F which graph neural network architecture should we use?
F does the architecture scale? can we train on small graphs and test on

large graphs?
F is it robust? can we train on one type of graphs/weights and test it on

another?
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Examples of (practical?) problems we can tackle

Example 12. semi-supervised learning on citation networks (?)
I Input: G(V; E; X), YL

use the benchmark citation network datasets from
https://linqs.soe.ucsc.edu/node/236 called CiteSeer, CORA, and
PubMed

I Goal: find the labels of all the nodes
I Research question

F which graph neural network architecture should we use?
F does the architecture scale? can we train on small graphs and test on

large graphs?
F is it robust? can we train on one type of graphs/weights and test it on

another?
F Can we beat the state-of-the-art?
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Examples of (practical?) problems we can tackle

Example 13. supervised learning on molecular network (?)
I Input: fGi(Vi; Ei; Xi; Zi)g, fYig

use the benchmark citation network datasets
I Goal: classify the graph
I Research question

F which graph neural network architecture should we use?
F does the architecture scale? can we train on small graphs and test on

large graphs?
F is it robust? can we train on one type of graphs/weights and test it on

another?
F Can we beat the state-of-the-art?
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Concrete examples of GNN in action: citation network

Citation Network Benchmark Dataset

Table: Citation Network Dataset

Dataset Nodes Edges Classes Features Labeled nodes
CiteSeer 3,327 4,732 6 3,703 120
Cora 2,708 5,429 7 1,433 140
PubMed 19,717 44,328 3 500 60
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Graph Convolutional Network (GCN) by Kipf and
Welling [2017 ICLR]

Input:
I graph: G(V; E) or equivalently A 2 f0; 1gn�n

I node features: X 2 Rn�dx

I labeled nodes: fYigi2L

Output:
I estimated classes: Z = fW(X; A) 2 Rn�dy

goal: graph-based semisupervised learning

How would you attack this problem?
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Leader board
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GCN:
[Input]-[Propagation]-[Perceptron]-[Propagation]-[Perceptron]- � � �
-[SoftMax]-[Output]
Forward Pass:

I H(0) = X
I Repeat for t = 1; 2; : : : ; T

F H̃(t) = PH(t�1) , with P = D�1A
F H(t) = ReLU(H̃(t)W(t))

I SoftMax(H(T)W(T+1))

Training:
I Let Z = fW(X; A)
I the weights W(1), W(2), : : :, W(T+1) are trained on the cross entropy

loss

LX;A;YL (W) = �
X
i2[n]

dyX
j=1

Yij ln Zij
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Why cross entropy loss?
it measures distance between Yi and Zi, e.g.
�
P

j Yij ln Zij = 0 if Yi = [1; 0; 0] and Zi = [1; 0; 0], and
�
P

j Yij ln Zij = � ln(1=3) if Yi = [1; 0; 0] and Zi = [1=3; 1=3; 1=3].
What is GCN doing?
summarizing the neighborhood and extracting sufficient statistics
Naive approach: store all neighborhood information

I computationally intractable
I memory blows up
I varying dimensions

as a solution GCN summarizes the local neighborhood by local
averaging in propagation layer, and attempts to find the sufficient
statistics via perceptron layer, recursively.
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some interpretation of the learned embeddings:

0.206 -0.261 -0.264 -0.18 -0.215 -0.27

-0.245 0.095 -0.224 -0.327 -0.149 -0.296

-0.336 -0.296 0.06 -0.227 -0.239 -0.24

-0.193 -0.287 -0.251 0.075 -0.236 -0.224

-0.175 -0.157 -0.262 -0.215 0.041 -0.141

-0.274 -0.321 -0.292 -0.232 -0.154 0.046
0.30

0.24

0.18

0.12

0.06

0.00

0.06

0.12

0.18

Citeseer
Agents

AI

DB

IR

ML

HCI

Agents AI DB IR ML HCI

0.061-0.267-0.356 -0.26 -0.14 -0.101-0.096

-0.3190.077-0.271-0.449 -0.54 -0.426-0.126

-0.48 -0.2480.028-0.415-0.273-0.279-0.316

-0.252-0.339-0.3350.034-0.145-0.083-0.166

-0.191-0.513-0.619-0.1290.026 0.017-0.047

-0.167-0.428-0.315-0.165-0.0110.043-0.116

-0.221-0.524-0.372-0.348-0.077 -0.18 0.049 0.56

0.48

0.40

0.32

0.24

0.16

0.08

0.00

Cora
Case_Based

Genetic_Algorithms

Neural_Networks

Probabilistic_Methods

Reinforcement_Learning

Rule_Learning

Theory

CB GA NN PM RL RuleTheory

Figure: Average influence from a column class to a row class

supervised learning 5-24



0.092 -0.372 -0.191

-0.341 0.026 -0.112

-0.168 -0.109 0.025

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.05

PubMed

Diabetes Mellitus, Experimental

Diabetes Mellitus Type 1

Diabetes Mellitus Type 2

Exp Type1 Type2

Figure: Average influence from a column class to a row class

supervised learning 5-25



Other approaches for graph-based semi-supervised
learning

main question is "how do you encode the graph information into a
learning?"

graph as a regularizer

LX;A;YL(W) =
X
i2L

`(fW(Xi);Yi)| {z }
Lsupervised(XL;YL)

+�
X

(j;k)2E

kfW(Xj) � fW(Xk)k2

| {z }
Lregularizer(A;X)

this is a natural parametric approach that can be learned via
back-propagation [“Deep Learning via Semi-supervised
embedding " by Weston et al. 2012]
two parts in the loss
encode the graph as a part of the loss, forcing nearby nodes to
have similar labels (or embeddings)
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There are earlier regularization approaches that are
non-parametric

LX;A;YL(f ) =
X
i2L

`(f (i);Yi)| {z }
Lsupervised(YL)

+�
X

(j;k)2E

Bijkf (j) � f (k)k2

| {z }
Lregularizer(A;X)

with Bij = e�(Xi�Xj)2=�2
.

This is a very popular approach known as Label Propagation
[“Learning from labeled and unlabeled data with label
propagation”, X Zhu, Z Ghahramani, 2002]
admits a closed form solution for � ! 0

supervised learning 5-27



we force true labels on the known nodes: f (i) = Yi, for i 2 L

build a similarity matrix B with Bij = e�(Xi�Xj)2=�2

build a graph Laplacian A = diag(B1) � B

and consider binary classification where
f = [f (1); : : : ; f (n)] 2 f0; 1gn

then the loss from previous slide becomes

minimizef f TAf

subject to f (L) = YL.
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This gives

L =
h
fL fU

i "ALL ALU

AUL AUU

# "
fL
fU

#

and we can minimize L(fU) = f T
L ALLfL + 2f T

L ALUfU + f U
U AUUfU

with fU = A�1
UUAULfL

as it admits this closed-form solution, it is very popular, but ...
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Concrete examples of GNN in action: community
detection

Input: graph G(V;E) or A
Output: Z = fW(A) 2 Rn�k clustering of the node sinto k classes

Spectral clustering:
consider binary classification for now and let Zi 2 f�1; +1g

minimize
X
i;j

Aij(1 � ZiZj)

minimizes the cut between two classes
and this is

P
j Aij(1 � ZiZj) = Di �

P
j AijZiZj, and hence

minimize
X
i;j

ZiLijZj = ZTLZ ;

where L = D � A is the graph Laplacian of G, Di is the degree of
node i, D = diag([D1; : : : ;Dn])
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We want to solve
minimize ZTLZ

subject to Zi 2 f+1;�1g

which is hard as it is a combinatorial problem. A common heuristic
is to relax the constraint and solve

minimize ZTLZ

subject to kZk2 = n.
however, this has a trivial solution, Zi = 1 for all i, that achieves the
minimum. Instead, we add a constraint that Z’s have to be
orthogonal to 1

minimize ZTLZ

subject to
P

i Zi = 0

This has a beautiful analytical solution now:
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GNN approach to community detection
[Community Detection with Graph Neural Networks, Joan Bruna,
Xiang Li, 2017]
Architecture

H(0) =
�
degree1 : : : degreen

�
H(t+1)

1 = ReLU
�

H(t)W(t;1) + diag(A1)H(t)W(t;2) +
1
n
11

T H(t)W(t;3) + H(t)W(t;4+j)
�

H(t+1)
2 = H(t)W(t;1) + diag(A1)H(t)W(t;2) +

1
n
11

T H(t)W(t;3) + H(t)W(t;4+j)

H(t+1) =
�
H(t+1)

1 H(t+1)
2

�

Oi = SoftMax(�;H(T)
i );

where Oi;c = eH
(T)�c
iP

a eH
(T)
i �a

and � 2 RdH�C where C is the number of

classes
L =

X
i

inf
�2ΠC

� log(Oi;�(yi))

where ΠC is the set of all permutations over the classes Csupervised learning 5-32



Training data generated from Stochastic Block Model of various
parameters
Testing data also generated from Stochastic Model of the same
size
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Concrete examples of GNN in action: graph matching
[A Note on Learning Algorithms for Quadratic Assignment with
Graph Neural Networks, Alex Nowak, Soledad Villar, Afonso S.
Bandeira and Joan Bruna, 2017]
Architecture

H(0) =
�
degree1 : : : degreen

�
H(t+1)

1 = ReLU
�

H(t)W(t;1) + diag(A1)H(t)W(t;2) +
1
n
11

T H(t)W(t;3) + H(t)W(t;4+j)
�

H(t+1)
2 = H(t)W(t;1) + diag(A1)H(t)W(t;2) +

1
n
11

T H(t)W(t;3) + H(t)W(t;4+j)

H(t+1) =
�
H(t+1)

1 H(t+1)
2

�
run it on both graphs GA and GB and then compute

M = (H(T)
A )TH(T)

B 2 Rn�n Then take SoftMax on each row to map
from GA to GB

Oi = SoftMax(Mi�);

L =
nX

i=1

� log(Oi;yi)
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Trained on Erdos-Renyi + Noise and test on the same
Trained on Random Regular graphs + Noise and tested on the
same
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Concrete examples of GNN in action: Quantum
Chemistry

[Neural Message Passing for Quantum Chemistry, Gilmer,
Schoenholz, Riley, Vinyals, Dahl, 2017]

I Input: chemical network with node features in {H, C, N, O, F }, and
edges of bond types {single,double, triple, or aromatic} and also
edge distances.

I Output: estimated chemical properties
I Training data:

H(t+1)
i =

X
j2N(i)

Mt(H̃
(t)
i ; H̃(t)

j ; Aij)

H̃(t+1)
i = Ut(H̃

(t)
i ; H(t+1)

i )

O = R(H(T))

with the choice of
Mt(H

(t)
i ; H(t)

j ; Aij) = fW(Aij)H
(t)
j

R(H(T)) = fW0(
X

i

H(T)
i )
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Trained and tested on benchmark dataset
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ICLR 2018
https://openreview.net/group?id=ICLR.cc/2018/Conference

"Classifying Graphs as Images with Convolutional Neural
Networks"
Antoine Jean-Pierre Tixier, Giannis Nikolentzos, Polykarpos
Meladianos, Michalis Vazirgiannis

I Graph classification (N graphs with n nodes each)
I graph kernels are

F slow: N2 comparisons, each costing n4 for shortest paths kernels
F SVM step can take N2

� N3

F feature learning and classification is separated
F Kernels tend to capture local structures (to keep complexity small)

I the paper proposes
[GraphEmbedding]-[2D-PCA]-[Histogram]-[CNN]

F GNN captures global structure
F end-to-end training
F GNN is fastersupervised learning 5-38
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"Graph Attention Networks"
Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana
Romero, Pietro Lio, Yoshua Bengio
node classification (semi-supervised learning)
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"RESIDUAL GATED GRAPH CONVNETS"
subgraph matching [in Scarselli et al. (2009)]

we generate a subgraph P of 20 nodes with a SBM q = 0.5, and
the signal on P is generated with a uniform random distribution
with a vocabulary of size 3, i.e. f0; 1; 2g.
Larger graphs Gk are composed of 10 communities with sizes
randomly generated between 15 and 25. The SBM of each
community is p = 0.5. The value of q, which acts as the noise
level, is 0.1, unless otherwise specified. Finally, the signal on Gk is
also randomly generated between f0; 1; 2g.
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architecture
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performance
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"Graph Partition Neural Networks for Semi-Supervised
Classification"
standard graph neural network

I could take long time to propagate (for a line graph n2 messages
sent)

proposed GPNN
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Performance
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"GraphGAN: Generating Graphs via Random Walks"
generate sibling graphs, which have similar properties yet are not
exact replicas of the original graph
challenges

I handle discrete objects
I in a typical setting one has to learn from a single graph
I any model operating on a graph necessarily has to be permutation

invariant
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"SPECTRALNET: SPECTRAL CLUSTERING USING DEEP
NEURAL NETWORKS"
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GNN with edge features

original GCN Forward Pass:
I H(0) = X
I Repeat for t = 1; 2; : : : ; T

F H̃(t) = PH(t�1) , with
P = D�1A

F H(t) = ReLU(H̃(t)W(t))

I SoftMax(H(T)W(T+1))

H(t+1)
i = ReLU(

1
di

X
j2N(i)

H(t)
j W(t+1))

edge-feature fFijg GCN
Forward Pass:

I H(0) = X
I Define Fi =

P
j2N(i) Fij

I Let F = [F1; F2; :::Fn] 2 Rn�dF

I Repeat for t = 1; 2; : : : ; T
F H̃(t) = PH(t�1) , with

P = D�1A
F H(t) =

ReLU(H̃(t)W(t) + FW̃(t))

I SoftMax(H(T)W(T+1) +
FW̃(T+1))

H(t+1)
i = ReLU(

1
di

X
j2N(i)

fH(t)
j W(t+1) + FijW̃(t+1)g)
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