Homework 0

There are two problems in this homework. Homework 0 will not be graded.

connected undirected graph

tree

Problem 0.1 An undirected graph G is a collection of nodes where some pairs of nodes are connected by edges. An edge connects two nodes, and the pair of nodes connected by an edge is called adjacent nodes.

- A walk is a sequence of nodes $\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ such that every consecutive nodes are adjacent, that is connected by an edge, e.g. (1,3,5,7,4,3).
- A path is a walk where no node is repeated more than once, e.g. (1,3,5,7,4).
- Two nodes i and j are connected if G contains a path from i to j.
- An undirected graph is connected if and only if all pairs of nodes are connected.
- A cycle is a walk that ends where it started, e.g. (1,3,5,7,4,2,1).

A tree is an undirected graph of n nodes that is i) connected and $i i$) has no cycle. Show using a mathematical induction that the number of edges in a tree with n nodes is $n-1$.

Problem 0.2 Given a sorted array of n real numbers, we want to find the relative position of a input real-valued key v in the sorted array. The "binary search" algorithm proceeds as follows.

- compare the input key with the value in the middle
- if the key is smaller, apply binary search recursively to the smaller half of the array
- if the key is larger, apply to the larger half
- repeat until the array has only one number

Show that, in the worst case, the total number of comparisons, $T(n)$, is given by a recurrence

$$
T(n)=1+T(\lceil(n-1) / 2\rceil)
$$

Provide an upper bound on the total number of comparisons $T(n)$ as a function of n.

