
2. Matching

Maximum bipartite matchings

Stable marriage problem

Matching 2-1

Matching in graphs
given a graph G = (V ;E),

a matching M = fe1; : : :g � E is a subset of edges such that no two
edges share a node
equivalently, a matching is a subgraph of G where the degrees of nodes
are at most one

a node is matched or used if it has degree one in M
otherwise we say the node is free of unused

similarly, an edge is either matched or free (used or unused)

a matching is maximum if it has maximum cardinality among all
matchings

a matching is maximal if no edge can be added to the matching while
preserving the matching property

a perfect matching is a matching that matches all nodes

a graph is bipartite if there is a partition V = A [B such that all
edges in E are between A and B

Matching 2-2

Maximum Bipartite Matching

consider a scenario where each person give a subset of hospitals that he
is willing to work at, and hospitals a subset of candidates

A
2

1

B
b

a A = f1; 2g: candidates
B = fa ; bg: hospitals
E = f(1; a); (2; a); (2; b)g
M = f(2; a)g

consider a bipartite graph G = (A;B ;E)

a matching is a subset of edges M � E , such that no two edges share
a node
size of a matching is the number of edges in the matching

problem. find a maximum (cardinality) bipartite matching

Matching 2-3

unlike the MST problem, a greedy algorithm fails

2

1

b

a

2

1

b

a A = f1; 2g: candidates
B = fa ; bg: hospitals
E = f(1; a); (2; a); (2; b)g
M1 = f(2; a)g
M3 = f(1; a); (2; b)g

we focus on the bipartite matching example
F an alternating path with respect to M is a simple path in G whose

edges alternate between used and unused
F an augmenting path with respect to M is an alternating path that

starts and ends at unmatched nodes (with odd lengths)

Matching 2-4

algorithm for finding a maximum bipartite matching
F start with M = fg
F while there is an augmenting path P , replace M by M � P
F when there is no augmenting path, return M

M � P = f(i ; j) j (i ; j) 2 M n P or (i ; j) 2 P nMg

length (2k+1) augmenting path has
k edges in M and
k+1 edges not in M

fact 1. each time we take the symmetric difference M � P , the size of M
increases by one

fact 2. augmenting path operation preserves matchings
Q. does this ensure correctness of the algorithm?

Matching 2-5

fact 1. each time we take the symmetric difference M � P , the size of M
increases by one
proof. an augmenting path P of size 2k + 1 has k used edges and
k + 1 unused edges, i.e. jP \M j = k , and jP nM j = k + 1. taking
the symmetric difference changes used edges to unused and vice versa.

fact 2. augmenting path operation preserves matchings
proof. matching is a graph where all nodes degrees are at most one.
after taking the symmetric difference, the interior nodes of the path
remain degree one. The two end points’ degree increase by one. But by
definition an augmenting path starts and ends at unmatched nodes
(with degree zero in the matching), and hence consequently have
degree one after symmetric difference. taking the symmetric difference

correctness
theorem.[Berge 1957] if the current matching M does not have the
maximum cardinality, then there exists at least one augmenting path
(notice this is also true for non-bipartite graphs)

Matching 2-6

proof of correctness. we prove by constructing an augmenting path.
Since M is not maximum matching, let M � be the maximum matching

jM j < jM �j

Consider the symmetric difference M∆ , M �M �, which contains the
edges appear either one of M or M 0 but not both.

M

M*

M M*�
There exists at least
 one alternating path

M’
|M’| > |M|

Matching 2-7

proof of correctness. we prove by constructing an augmenting path.
Since M is not maximum matching, let M � be the maximum matching

jM j < jM �j

Consider the symmetric difference M∆ , M �M �, which contains the
edges appear either one of M or M 0 but not both.
Each node in M∆ has degree at most two.
So M∆ consists of simple paths and cycles.
A cycle has even number of edges and those edges alternate between
being in M and in M � (since M and M 0 have degree at most one).
Since jM �j > jM j, there must be at least one path P with more edges
from M � than M .

P is an augmenting path w.r.t. M , since it has odd cardinality (more
number of edges from M �), alternating edges (symmetric difference),
and starts and ends at unused nodes (if it was used by M then the
symmetric difference would be an isolated node with degree zero or
degree two).

Matching 2-8

how do we find an augmenting path?
concretely, find an augmenting path by a modified breadth first search

A B
G(A; B; E) and M G0(A; B; E 0) augmenting path M � P

first, given a bipartite graph G = (A;B ;E) and a matching M , define
a directed graph G 0 = (A [B ;E 0) such that

E 0 = f(i ; j) 2 E nM j i 2 A; j 2 Bg [f(i ; j) 2 M j i 2 B ; j 2 Ag

modified BFS for finding augmenting paths
F for each (unused) node a in A, repeat
F use BFS on the directed graph G 0 to find a path P starting from a

and ends at an unused node in B
F if P found, then output P

Matching 2-9

complexity
F if a node is used, it stays used. Each augmenting path increases the

number of used nodes by two. So we have to do min(jAj; jB j)
augmentations

F finding an augmenting path requires a BFS, and this takes O(jE j) and
we need to repeat BFS starting from each of the min(jAj; jB j) nodes

F total complexity is O(jE j min(jAj; jB j)2)

unweighted bipartite matching is the simplest problem

weighted bipartite graphs
F weighted augmenting paths can solve the problem
F also, Hungarian algorithm solves the problem in time

O(jV j2 log jV j+ jV jjE j)

general (non-bipartite) graphs
F Edmonds’ algorithm solves the problem in time O(

p
jV j jE j)

Matching 2-10

Maximum bipartite matching example
flight scheduling

I You are planning the flight schedule for a airline for one day. You have
two pieces of information at your disposal:

I The time needed for a direct flight between any two airports. For
example, you might be told that the time needed for a flight from New
York to San Francisco is 7 hours.

I A list of all desired flights that must run throughout the year. For each
flight you know its origin, destination and departure details (times are
given in GMT). For example, a flight may be characterized by the
3-tuple "New York / San Francisco / GMT 11:30". Note that the
arrival time can be found from the first piece of information: this flight
arrives at San Francisco at GMT 18:10 on the same day.

I For simplicity, assume that it is possible for a plane to depart an airport
on another flight immediately after it has arrived on a previous flight
(i.e., there is no delay/service time between flights). Planes may also
make flights that are not in the flight list.

We want to determine the minimum number of planes the company
needs to purchase, in order to fulfill all its flight requirements.
Formulate this as a maximum bipartite matching problem

Matching 2-11

I JFK-SFO : 10:00-17:00
I CMI-ORD : 8:00-9:00
I CMI-ORD : 19:00-20:00
I ORD-CMI : 18:00-19:00
I ORD-JFK : 9:00-13:00
I ORD-SFO : 10:00-16:00
I SFO-ORD : 17:00-23:00
I JFK-CMI : 14:00-18:00

Matching 2-12

Maximum bipartite matching and minimum vertex cover

Maximum independent set / minimum vertex cover problem
An independent set of a graph G is a set of nodes S such that no
pair of nodes in S are joined by an edge in G .

Q. Given a bipartite graph G , find the maximum independent set.

A vertex cover of a graph G is a set of nodes K � V such that each
edge of G has at least one end point in K .

Q. Given a bipartite graph G , find the minimum vertex cover.

theorem. S is an independent set iff V n S is a vertex cover

proof.
S is an independent set

() for all pairs of nodes i and j in S , (i ; j) =2 E
() for all (i ; j) 2 E , either i =2 S or j =2 S
() V n S is a vertex cover

Matching 2-13

theorem. (König’s theorem) the size of a maximum bipartite
matching equals the size of the minimum vertex cover

jM �j = jK �j

proof.
fact 1. Clearly, jM j � jK j for any matching M and any vertex cover K .

Therefore, it follows that the inequality is true also for the maximum
matching and the minimum vertex cover: jM �j � jK �j.

claim 1. What is surprising is that the other direction is also true. To prove the
other direction, we want to find K such that jK j � jM �j. Then,
jK �j � jK j � jM �j and we are done proving jM �j = jK �j. A naive
guess will be to take one node from an edge in the matching, but how?

Maximum matching M
start coloring

all unused node
Find all

alternating paths Vertex cover is

covered!

covered!

does not exist!

fact 1. all light red and dark blue are USED
fact 2. no matching connects both light red and dark blue
hence, number of matching jM �j is at least as large as number of jK j.

Matching 2-14

theorem. (König’s theorem) the size of a maximum bipartite
matching equals the size of the minimum vertex cover

jM �j = jK �j

proof (formal).
fact 1. Clearly, jM j � jK j for any matching M and any vertex cover K . This

is because for K to be a vertex cover, it needs to cover the edges in
M � E at least. And since M is a matching, no edgesin M share the
same node. So the number of nodes necessary to cover M is at least
jM j. And to cover all the edges in E requires more nodes than that.
Therefore, any vertex cover K has more nodes than any matching M .

Therefore, it follows that the inequality is true also for the maximum
matching and the minimum vertex cover: jM �j � jK �j.

What is surprising is that the other direction is also true. To prove the
other direction, we want to find K such that jK j � jM �j. Then,
jK �j � jK j � jM �j and we are done proving jM �j = jK �j. A naive
guess will be to take one node from each edge in the matching. Let’s
make this formal.

Matching 2-15

1

2

a

b

3 c

4 dU

A B

W={a,b,1,2,4}
P={1,2,4}
Q={a,b}
K={3,a,b}

F Let U be the set of unused nodes in A
F Let W be the set of nodes reachable from U via alternating paths

(including U)
F Let P = W \A
F Let Q = W \ B

fact there cannot be an edge from P to B nQ , since the endpoint in B nQ
would then be in W and thus in Q

I Then, K = Q [(A n P) is a vertex cover, since
F edges between P and Q are covered by Q
F no edges between P and B nQ
F edges between A n P and B are covered by A n P

Matching 2-16

1

2

a

b

3 c

4 dU

A B

W={a,b,1,2,4}
P={1,2,4}
Q={a,b}
K={3,a,b}

We are left to show that jK j � jM �j. It follows directly from the
following claims.

I A n P are used (by definition)
I all nodes in Q are used (otherwise we have an augmenting path, and

the matching is not maximum)
I there is no matched edge between Q and A n P (otherwise the left

endpoint of that used edge must be included in P)

Therefore, the number of edges in M � is at least the number of nodes
in K

jK j � jM �j

Matching 2-17

The stable marriage problem
stable marriage problem

I there are n hospitals fa ; b; c; : : :g
I there are n residents fA;B ;C ; : : :g
I each hospital submits its list of preferences, e.g. H > B > R > : : :

I each resident submits its list of preferences, e.g. d > f > b > g > : : :

I all hospitals (or residents) have to be ranked in each preference list

problem. find a matching of residents to hospitals such that there is
no instability

F a matching is a set of pairs (a ;F); (c;B); : : : such that each hospital
or resident appears exactly once

A

B

C

a

b

c

a>b>c

b>a>c

c>b>a

A>C>B

A>C>B

A>B>C

the pair (A; a) is unstable
F a matching is unstable if there exists a pair of a resident and a hospital,

who are not assigned under current matching, and prefer each other
over their assigned partnersMatching 2-18

Approach 1. Take each resident and assign his favorite hospital that
has not been taken already

I this might give a matching that is unstable, e.g. B:c>a

A

B

C

a

b

c

B>C>A

B>A>C

A>B>C

Approach 2. Take any matching and swap partners of unstable pairs if
there exists any instability.

I this might oscillate over matchings that are unstable

A

B

C

a

b

c

b>a>c

c>a>b

a>b>c

A>C>B

C>A>B

C>A>B

A : abcca � � �

B : baabb � � �

C : ccbac � � �

Matching 2-19

theorem. for any preference lists, there always exists a stable matching

proof. we prove by contradiction.
Gale and Shapley in 1962, came up with an algorithm that finds a
stable matching for any preference list. (Typically there might be many
stable matchings)

algorithm
F WHILE there exists unmatched residents
F Each ‘unengaged’ resident ‘propose’ to a hospital he has not

proposed to yet
F Each hospital chooses the most favorable resident out of those

who are proposing and his current resident he is engaged to, and gets
engaged possibly to a better resident

F RETURN the matching

lemma 1. the algorithm produces a perfect matching

lemma 2. the matching is stable

Matching 2-20

lemma 1. the algorithm produces a perfect matching
proof. we prove by construction.

Once a hospital is engaged, it will stay engaged in the future (the
partner might change). Suppose there is a pair (a ;A) that is not
engaged by the end, this can only happen if the hospital never got
engaged. This can only happen if no one ever proposed to that
hospital. However, this is a contradiction, since resident a must have
proposed to every hospital, before he realizes that he has no one to
propose anymore.

will this terminate? yes.
there are at most n2 proposals and no proposal is repeated. So the
algorithm terminates in less than n2 iterations.

Matching 2-21

lemma 2. the matching is stable
proof. (formal) we prove by contradiction.

F Suppose A is matched to a but prefers b over a . Also, b is matched to
B but prefers A over B . Then, the pair (A; b) is unstable.

A

B

C

a

b

c

A>B

b>a

F From the outcome of the algorithm we know

F A-a implies A has proposed to a
F B-b implies B has proposed to b
F b:A>B but B-b implies A has never proposed to b (otherwise A and b

will be matched)

F This implies that A proposed to a before b, which only happened if A
preferes a > b.

F This contradicts the assumption that A prefers b > a .

Matching 2-22

fact this algorithm always produces the same matching, regardless of the
order in which we choose the proposals

is this matching optimal/fair?

A

B

C

a

b

c

b>a>c

c>b>a

a>c>b

B>A>C

C>B>A

A>C>B

Optimal for A,B,C

A

B

C

a

b

c

b>a>c

c>b>a

a>c>b

B>A>C

C>B>A

A>C>B

A

B

C

a

b

c

b>a>c

c>b>a

a>c>b

B>A>C

C>B>A

A>C>B

Optimal for a,b,c

theorem. under this algorithm, the residents get the best possible
hospitals, in the sense that they cannot get a better hospital under
any other stable matching.

proof. we prove by induction
F For a resident A, consider a set of ‘possible’ hospitals, which are the

hospitals he can be matched to under a stable matching. We claim
that A will never be rejected by a possible hospital. Then, since each
resident goes from the best in his list to the worst, as soon as he has
proposed to the best possible hospital, he will be matched and never be
rejected in the following rounds. So this proves the claim.

Matching 2-23

we are left to prove that
Each resident will never be rejected by its possible hospitals.

we prove this by induction in the time step of the algorithm k
I When k = 1, no one has been rejected, so the statement is true.
I Suppose the statement is true up to time step k � 1, and A has just

been rejected by a in favor of B at time k . Then,
F B prefers a to all other hospitals except for these who already rejected

him.
F by induction hypothesis, those who rejected B are impossible for B .

I We claim that (A; a) cannot be stable. We prove this by contradiction.
I Suppose there is a stable matching containing the pair (A; a).
I Then, this is a contradiction because

F B prefers a to any other possible hospitals.
F a prefers B to A .
F So the pair (B ; a) is unstable.

I Therefore, a is not possible for A.

A

B

C

a

b

c

a>c

B>A

impossible for B

possible for B

Matching 2-24

theorem. under this algorithm where residents make proposals, the
hospitals get the worst possible residents

proof. we prove by contradiction
I Suppose a hospital a prefers A to B and both A and B are possible

residents.
I Suppose the algorithm chooses the pair (A; a) eventually.
I We show there is a contradiction

F From the previous theorem, we know that a is the best option for A.
F There exists a stable matching with (B ; a) and (A; d), for example.
F Then, this is a contradiction since the pair (A; a) is unstable. We know

that A prefers a > d and a prefers A > B .

A

B

C

a

b

c

a>c A>B

impossible for A

possible for A

Matching 2-25

what is the complexity?

naive implementation has worst-case complexity O(n3)
F Consider a simpler version of the algorithm. Start from one resident A

and if he is not engaged yet, propose to the next best hospital in his
list. The corresponding hospital will choose the better one among his
current engaged partner and the new proposal. This also runs at most
n2 proposals, since there are n2 proposals and we try out one proposal
at each iteration and never repeat any proposal. However, at each step,
we might have to search for a ‘free’ resident who is not engaged
currently. This takes n time in the worst case. Hence, this algorithm
has worst-case complexity (or running time) of n3.

can we do better?
F Now consider a different approach. Start from one resident A and

proceed similarly. If he is matched to a hospital who does not have any
partner currently, then move to resident B . But, if there was already a
partner, then you do the matching as before (match the hospital to the
better one of the current parter or A who just proposed). And, next
step you move to the one that has been cast out of this match.
Because you know for sure that this person is not currently matched.
There is no searching for this algorithm, and the running time is at
worst-case n2

Matching 2-26

here is a list of related questions

Q. is there a stable matching that is fair for both parties?

Q. in the worst case, how many stable matchings are there? (open
problem)

Q. organize n men, n women, and n dogs into families of three, each
containing one man, one woman, and a dog such that no man, woman,
dog have an incentive to desert the current family for a new family.
(NP-complete)

Q. stable roommates problem: 2n people have ordered preferences
F there might not be a solution, for example,

A: B>C>D
B: C>A>D
C: A>B>D
D: A>B>C

F there is a O(n2) time algorithm to determine if there is a stable
matching, and to find one if there is

Matching 2-27

Puzzle: Dynamic Programming

There are four animals on one side of a river and only one boat. A mouse
can cross the river in 1 minute, a cat can cross it in 2, a horse in 5 and
elephant in 10 minutes. At most two animals can cross the river together at
any time. When two people cross the river they will cross it at the rate of
the slowest animal. So, for example, if you cross together with the elephant,
the journey will take 10 minutes. Someone will have to bring back the boat
each time so that another pair can cross the bridge.

(a) Show that, if a mouse escorts each of the animals in turn across the river
and then cross back on the boat, the total crossing time is 19 minutes.

(b) Find a sequence of crossings that takes 17 minutes. Is this optimal?

(c) Now, assume that N animals must cross the river, and you know their
individual crossing times. You wish to determine the optimal total crossing
time. Explain how one could solve this problem optimally (using dynamic
programming).

Matching 2-28

Puzzle: Dynamic Programming

Time t 2 f1; 2; 3; 4; 5g

State St

Action at

cost ct

Transition (St ; at ;St+1; ct)

Optimal action a�

t (St)

Matching 2-29

Puzzle

You want to test when a laptop breaks when dropped from a great height.
You are provided with n identical laptops. There is a high-rise apartment
nearby with k floors labelled 1; : : : ; k . Assume that k is very large. You
conduct your tests as follows:

You choose a floor of the apartment, take the lift to that floor, drop a
laptop from the balcony and see if it breaks. If it does not break, you may
use that laptop again in future tests. You stop testing when you find a floor
i such that the laptop does not break when tossed from floors j � i , and
either i = k or the laptop breaks when tossed from floor i + 1. Note that if
the laptop breaks when tossed from floor i then it will always break when
tossed from floors j > i . Similarly, if the laptop does not break when tossed
from floor i then it will never break when tossed from floors j � i .

You want to find the maximum floor number for which the laptop does not
break.

Matching 2-30

Puzzle continued
(a) Suppose n = 1. In the worst case, what is the minimum number of tests

you must conduct to obtain a conclusive answer?

(b) Suppose n > k. In the worst case, what is the minimum number of tests you
must conduct? What is the minimum value of n for which your algorithm
still works?

(c) For general n, find a dynamic programming algorithm to determine the
minimum number of tests you must conduct in the worst case.

(d) Now consider a continuous version of the problem: you are now supplied
with a moving platform attached to a high-rise apartment with height H . A
test consists of picking any real number in the interval [0;H] and dropping
the laptop from that height. Suppose you only have time to make m tests,
and that you still have n laptops at your disposal. Let A = min(H ; h0),
where h0 is the height such that the laptop breaks when dropped from
heights > h0 and does not break when dropped from heights < h0. Find an
algorithm that determines the minimal error you can calculate A to. In other
words, what is the smallest � such that, after you perform the tests, you can
guarantee that A lies in an interval of width at most � (regardless of the
actual value of h0)?

Matching 2-31

Example

Problem 1.
A university comprises 30 different colleges. College i can
accommodate up to ci students. In the application process, prospective
students each choose a first-choice and a second-choice college. (All
other colleges are automatically tied for ‘third choice’.) All applicants
then sit an admissions test, and only the top

P
i ci students are

granted admission to the University. Based on application forms and
the admissions test scores, each college then compiles a preference
ranking of all the students. The Graduate Studies Board (GSB)
receives all this information and is required to find an allocation of
students to colleges such that, for any student j , swapping j ’s college
with any other student’s college i will not make both j and i happier.
Is this always possible? If so, show the GSB how to do this.

Matching 2-32

Example

Problem 2.
A police station receives notice of m crimes happening simultaneously
all over town. There are n police cars at its disposal, where n > m .
Car i can get to crime scene j in time tij and one car can only go to
one crime scene. Assuming that the tij are known, devise an algorithm
that allocates cars to crime scenes in such a way that the maximum
time for each crime scene to be reached by a police car is minimized.
Precisely, let Tj (M) be the time required for a police car to reach the
crime scene j under matching M . Then, devise an algorithm that finds
a matching of police cars to crime scenes such that it minimizes the
maximum time to reach a crime scene:

min
M

max
j

Tj (M)

Matching 2-33

Example

Problem 3.
You are given an N �N chessboard. Some cells in the chessboard
have been destroyed (call them ‘holes’) and you are also given a list of
these cells. We want to determine the maximum number of rooks you
can place on the chessboard such that no two rooks attack each other.
(A rook attacks another rook if they both lie in the same row or
column - regardless of whether there are any holes between them.)
Note that you can’t place a rook in a hole.

R

R

R

R

Formulate this problem as the maximum matching problem.

Matching 2-34

Example
Problem 4. (Hall’s matching theorem)

Define a perfect matching as a matching that matches all the nodes in
A of a bipartite graph G = (A;B ;E). Hall proved the following
celebrated result in 1935.
theorem. For a bipartite graph G = (A;B ;E), there exists a perfect
matching M if and only if for every subset X � A,

jX j � jN (X)j ; (1)

where the neighborhood of a set is defined as

N (X) = fb 2 B j 9a 2 X with (a ; b) 2 Eg

(a) Show that if there is a perfect matching then (1) holds. (this should be
easy)

(b) Show that if (1) holds, then there exists a perfect matching. (there are
many ways to prove this claim, using either induction, contradiction, or
construction)

(c) (bonus) Let G = (A;B ;E) be a bipartite graph, and let d be the least
non-negative integer such that jN (X)j � jX j � d for every subset
X � A. Show that the size of the maximum matching in this graph is
jAj � d .

Matching 2-35

