## 4. Spectral methods

- Linear algebra review
- Markov chain
- Perron-Frobenius theorem
- Random walk on graphs
- PageRank axioms
- Graph Laplacian matrix


## Spectral methods for network problems

- Motivating example:
- PageRank by GOOGLE

- Problem: given a search query, rank web pages according to how relevant they are
- Idea: random walk on graphs
- Motivating example:
- Spectral Graph Partitioning

- Problem: given a graph of interactions, cluster the nodes as to group connected components together
- Idea: minimize conductance $\frac{c(A, B)}{\min \{e(A), e(B)\}}$ where $e(A)=\sum_{i \in A} \sum_{j \in V} e_{i j}$
- Motivating example:
- Spectral Clustering [Tamuz et al. 2011]

- Problem: cluster $N$ items in high-dimensional spaces
- Idea: use pair-wise similarity graph


## Linear algebra review

- Vector space $\mathbb{R}^{n}$
- closed under addition: for all $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{n}, x+y \in \mathbb{R}^{n}$
- closed under scalar multiplication: for all $x \in \mathbb{R}^{n}$ and $c \in \mathbb{R}, c x \in \mathbb{R}^{n}$
- Inner product

$$
\langle u, v\rangle \triangleq \sum_{i} u_{i} v_{i}=u^{T} v
$$

- Euclidean norm

$$
\|u\| \triangleq \sqrt{\sum_{i} u_{i}^{2}}
$$

- Cauchy-Schwarz inequality

$$
\begin{aligned}
|\langle u, v\rangle| & \leq\|u\|\|v\| \\
\cos \theta & =\frac{\langle u, v\rangle}{\|u\|\|v\|}
\end{aligned}
$$

- Subspace is a subset of a vector space which is itself a vector space
- Matrix $A \in \mathbb{R}^{n \times m}$
- Range of a matrix is a subspace defined as

$$
\left\{A u \mid u \in \mathbb{R}^{m}\right\}
$$

It is a subspace spanned by columns of $A$

- Rank of a matrix $A$ is the dimension of the range of $A$
- a set of vectors $\left\{v_{1}, \ldots, v_{k}\right\}$ is independent if and only if any $v_{i}$ cannot be represented as a linear combination of other vectors, i.e.

$$
a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{k} v_{k} \Rightarrow a_{1}=a_{2}=\cdots=a_{k}=0
$$

- a set of vectors $\left\{v_{1}, \ldots, v_{k}\right\}$ is a basis for a vector space $V$ if and only if
$\star\left\{v_{1}, \ldots, v_{k}\right\}$ span $V$, i.e. $v=\operatorname{span}\left(\left\{v_{1}, \ldots, v_{k}\right\}\right)$; and
$\star\left\{v_{1}, \ldots, v_{k}\right\}$ is independent
for any vector space, the number of vectors in the basis is the same as the rank
the nullspace of a matrix $A \in \mathbb{R}^{n \times m}$ is defined as

$$
\operatorname{null}(A)=\left\{x \in \mathbb{R}^{m} \mid A x=0\right\}
$$

which is the set of vectors orthogonal to all rows in $A$
fact 1. $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)$
fact 2. $\operatorname{rank}(A)$ is the maximum number of independent columns (or rows) of A
fact 3. $\operatorname{rank}(A) \leq \min (m, n)$
fact 4. $\operatorname{rank}(A)+\operatorname{dim}(\operatorname{null}(A))=m$
interpretation: consider $y=A x$ where we apply matrix $A$ to an input vector $x$ to get an output vector $y$

- $m$ is the degrees of freedom in $x$
- $\operatorname{dim}(\operatorname{null}(A))$ is the number of degrees of freedom crushed to zero by applying $A$
- $\operatorname{rank}(A)$ is the number of degrees of freedom in the output $y$
fact 5. $\operatorname{rank}(B)-\operatorname{dim}(\operatorname{null}(A)) \leq \operatorname{rank}(A B) \leq \min (\operatorname{rank}(A), \operatorname{rank}(B))$
a matrix $A \in \mathbb{R}^{m \times n}$ is full rank if and only if $\operatorname{rank}(A)=\min (m, n)$
$\star$ even if $A$ and $B$ are full rank, $A B$ might not be full rank (e.g. low-rank factorization)
$\star$ even if $A B$ is full rank, either one of $A$ and $B$ might not be full rank
$\star$ if $A$ and $B$ have empty null spaces, then $A B$ has an empty null space
$\star$ give a non-zero matrix $A$ such that $A^{2}=0$ is a all-zeros matrix
$\star$ if $\angle(A x, x)=0$ for all $x \in \mathbb{R}^{n}$, i.e. all vectors are eigenvectors, then what can we say about $A$ ?
- Eigenvectors and eigenvalues
- $\lambda \in \mathbb{C}$ is an eigenvalue of $A \in \mathbb{R}^{n \times n}$ if

$$
A v=\lambda v
$$

and any such $v$ is called an eigenvector of $A$.

- If $v$ is an eigenvector of $A$, then so is $a v$.
- Even when $A$ is real, eigenvalue $\lambda$ and eigenvector $v$ can be complex
- Rank of $A$ is the number of non-zero eigenvalues
- Scaling interpretation (assume $\lambda \in \mathbb{R}$ for now)
- if $v$ is an eigenvector, it is scaled by $\lambda: A v=\lambda v$.
- if $x=c_{1} v_{1}+c_{2} v_{2}$, then $A x=c_{1} \lambda_{1} v_{1}+c_{2} \lambda_{2} v_{2}$.


$$
\begin{aligned}
{\left[\begin{array}{cc}
5 & -3 \\
-3 & 5
\end{array}\right]\left[\begin{array}{c}
3 \\
-1
\end{array}\right] } & =A\left[\begin{array}{l}
1 \\
1
\end{array}\right]+A\left[\begin{array}{c}
2 \\
-2
\end{array}\right] \\
& =2\left[\begin{array}{l}
1 \\
1
\end{array}\right]+8\left[\begin{array}{c}
2 \\
-2
\end{array}\right]
\end{aligned}
$$

- scaling interpretation
$\star \lambda>0$ : Av point in the same direction as $v$
$\star \lambda<0: A v$ point in opposite direction as $v$
$\star|\lambda|<1: A v$ smaller than $v$
$\star|\lambda|>1 A v$ larger than $v$
- eigenvectors are not unique when multiple eigenvalues have same value

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

- symmetric matrices have real eigenvalues and eigenvectors

$$
\begin{aligned}
\lambda v & =A v \\
\lambda^{*} v^{*} & =v^{*} A^{T} \\
\lambda^{*} v^{*} v & =v^{*} A^{T} v
\end{aligned}
$$

$$
\text { but we also have } \lambda v^{*} v=v^{*} A^{T} v
$$

since $v^{*} v$ is a real number, we can conclude that $\lambda=\lambda^{*}$

- it is not immediately clear why eigenvalues and eigenvectors play important role in discrete mathematics; eigenvalues have many equivalent characterizations, and perhaps these equivalent representations shine a light on why they are significant
the Rayleigh quotient of a non-zero vector $x$ with respect to a matrix $A$ is defined as the ratio

$$
\frac{x^{T} A x}{x^{T} x}
$$

theorem. let $v$ be the one that maximizes the Rayleigh quotient of a symmetric matrix $A$. Then $v$ is an eigenvector with the eigenvalue equal to the Rayleigh quotient, and this eigenvalue is the largest eigenvalue of $A$.
proof. we solve the unconstrained maximization by setting the gradient to zero

$$
\frac{\partial \frac{x^{T} A x}{x^{T} x}}{\partial x}=\frac{-\left(x^{T} A x\right) 2 x+\left(x^{T} x\right) 2 A x}{\left(x^{T} x\right)^{2}}=0
$$

this gives

$$
A x=\left(\frac{x^{T} A x}{x^{T} x}\right) x
$$

which implies that the maximizer is a eigenvector, and that the Rayleigh quotient is equal to the largest eigenvalue

Courant-Fischer theorem. let $A$ be a symmetric matrix with eigenvalue $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$, then

$$
\begin{aligned}
\lambda_{k} & =\min _{H \in \mathbb{R}^{n}, \operatorname{dim}(H)=n-k+1} \max _{x \in H} \frac{x^{T} A x}{x^{T} x} \\
& =\max _{H \in \mathbb{R}^{n}, \operatorname{dim}(H)=k} \min _{x \in H} \frac{x^{T} A x}{x^{T} x}
\end{aligned}
$$

proof. here we only prove the second equation.
$\star$ A symmetric matrix has a orthogonal and normalized eigenvectors $\left\{v_{1}, \ldots, v_{n}\right\}$. Any subspace $H$ that has dimension $k$ has a non-empty intersection with the subspace spanned by $\left\{v_{k}, \ldots, v_{n}\right\}$. Let $x$ be a vector in this subspace such that $x=\sum_{i=k}^{n} \alpha_{i} v_{i}$ for some scalars $\alpha_{i}{ }^{\prime}$ s. Then,

$$
\frac{x^{T} A x}{x^{T} x}=\frac{\sum_{i=k}^{n} \alpha_{i}^{2} \lambda_{i}}{\sum_{i=k}^{n} \alpha_{i}^{2}} \leq \lambda_{k}
$$

it follows that $\min _{x \in H} \frac{x^{T} A x}{x^{T} x} \leq \lambda_{k}$ for any $k$ dimensional $H$ and in particular $\min _{x \in H} \frac{x^{T} A x}{x^{T} x} \leq \lambda_{k}$. And we know this can be achieved with equality by choosing $H=\operatorname{span}\left(\left\{v_{1}, \ldots, v_{k}\right\}\right)$. This proves that $\lambda_{k}=\max _{H \in \mathcal{H}_{k}} \min _{x \in H} \frac{x^{T} A x}{x^{T} x}$

## Application in natural language processing

- we say two words co-occur if they are used together in a sentence
- given a dataset (e.g. Wikipedia), we can build a co-occurrence matrix of all the words in the vocabulary
- consider a corpus: \{ I like deep learning. I like NLP. I enjoy flying. \}
- my vocabulary is \{I, like, enjoy, deep, learning, NLP, flying \}

$$
C=\left[\begin{array}{llllllll}
0 & 2 & 1 & 0 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0
\end{array}\right]
$$

## Application in natural language processing

- consider a corpus: \{ I like deep learning. I like NLP. I enjoy flying. \}



## Application in natural language processing

- "An improved model of semantic similarity based on lexical co-occurrence", Rhode et al. 2005



## Application in natural language processing

- "An improved model of semantic similarity based on lexical co-occurrence", Rhode et al. 2005



## Application in natural language processing

- word vector analogies task

$$
a: b:: c: ?
$$

- man : woman :: king : ?
- solution

$$
d=\arg \max _{i}\left(x_{b}-x_{a}+x_{c}\right)^{T} x_{i}
$$



## Application in natural language processing

- man : woman


Spectral methods

## Application in natural language processing

- copmany : ceo


Spectral methods

## Application in natural language processing

- superlatives


Spectral methods

## Application in natural language processing

| Expression | Nearest token |
| :---: | :---: |
| Paris - France + Italy | Rome |
| bigger - big + cold | colder |
| sushi - Japan + Germany | bratwurst |
| Cu - copper + gold | Au |
| Windows - Microsoft + Google | Android |
| Montreal Canadiens - Montreal + Toronto | Toronto Maple Leafs |

Markov chain (discrete time, finite state, homogeneous)

- discrete time $t=1,2, \ldots$
- $n$ states
- random process $X_{t}$ takes one of $n$ states
- Markov chain: $X_{t}$ is conditionally independent of the past give $X_{t-1}$
- transition probability $P_{j i}=\mathbb{P}\left(X_{t+1}=j \mid X_{t}=i\right)$

$$
p(t+1)=P p(t)
$$

- example: random walk on a graph


$$
P=\left[\begin{array}{cccc}
0 & 1 / 2 & 1 / 2 & 1 / 3 \\
1 / 3 & 0 & 0 & 1 / 3 \\
1 / 3 & 0 & 0 & 1 / 3 \\
1 / 3 & 1 / 2 & 1 / 2 & 0
\end{array}\right]
$$

$$
\left[\begin{array}{l}
\mathbb{P}\left(X_{t}=1\right) \\
\mathbb{P}\left(X_{t}=2\right) \\
\mathbb{P}\left(X_{t}=3\right) \\
\mathbb{P}\left(X_{t}=4\right)
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
1 / 3 \\
1 / 3 \\
1 / 3
\end{array}\right],\left[\begin{array}{c}
1 / 6+1 / 6+1 / 9 \\
1 / 9 \\
1 / 9 \\
1 / 6+1 / 6
\end{array}\right], \cdots
$$

## Stationary distribution

- conditional probability sums to one: $\sum_{j} P_{j i}=1$
- rewrite as $\left[\begin{array}{llll}1 & \ldots & 1\end{array}\right] P=\left[\begin{array}{llll}1 & 1 & \ldots & 1\end{array}\right]$
$\left[\begin{array}{llll}1 & 1 & 1 & \ldots\end{array}\right]$ is a left eigenvector of $P$ with eigenvalue 1 .
- there is a corresponding eigenvector with eigenvalue 1 . Let's call it $p=\left[\begin{array}{llll}p_{1} & p_{2} & \ldots & p_{n}\end{array}\right]^{T}$.

$$
p=P p .
$$

- interpretation. this eigenvector is called the stationary distribution of a Markov chain $P$.
* If $p(0)=p$, then $p(t)=P^{t} p=P^{t-1}(P p)=p^{t-1} p=p$ for all $t$.
$\star$ in the limit as time gors to infinity, $\lim _{t \rightarrow \infty} p(t)=\lim _{t \rightarrow \infty} P^{t} p(0)=p$


$$
P=\left[\begin{array}{cccc}
0 & 1 / d_{2} & 1 / d_{3} & 1 / d_{4} \\
1 / d_{1} & 0 & 0 & 1 / d_{4} \\
1 / d_{1} & 0 & 0 & 1 / d_{4} \\
1 / d_{1} & d_{2} / d_{2} & 1 / d_{3} & 0
\end{array}\right]
$$

example: random walk on an undirected graph

- $P_{j i}=1 / d_{i}$ if $(i, j) \in E$
- sanity check
$\star$ is $\left[\begin{array}{llll}1 & 1 & \cdots & 1\end{array}\right] P=\left[\begin{array}{llll}1 & 1 & \cdots & 1\end{array}\right]$ ?
$\star$ what is the right eigenvector?
- the stationary distribution unique if and only if
$\star$ graph is connected and
$\star$ graph is aperiodic
proof uses Perron-Frobenius theorem, and we will prove it formally later in this note


## Perron-Frobenius theorem

- We say a matrix or a vector is
- positive if all its entries are positive
- nonnegative if all its entries are nonnegative
- we use notation $x>y(x \geq y)$ to mean $x-y$ is entrywise positive (nonnegative)
- Basic facts
- if $A \geq 0$ and $z \geq 0$, then $A z \geq 0$.
- conversely, if for all $z \geq 0$, we have $A z \geq 0$, then we can conclude $A \geq 0$.
- in otherwords, matrix multiplication preserves nonnegativity if and only if the matrix is nonnegative
- if $A>0$ and $z \geq 0, z \neq 0$, then $A x>0$.
- conversely, if whenever $z \geq 0, z \neq 0$, we have $A z>0$, then we can conclude $A>0$.
- Regular nonnegative matrices
- suppose $A \in \mathbb{R}^{n \times n}$, with $A \geq 0$.
- $A$ is called regular if for some $k \geq 1, A^{k}>0$
- meaning in the example of random walk on graphs
$\star$ there is an edge from $i$ to $j$ whenever $A_{i j}>0$
$\star$ then $\left(A^{k}\right)_{i j}>0$ if and only if there is a path of length $k$ from $i$ to $j$
$\star A$ is regular if for some $k$ there is a path of length $k$ from every node to every other node
- examples:
- $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ are not regular.
- $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$ is regular.


## Perron-Frobenius theorem

- Assume $A$ is nonnegative and $A^{k}>0$ for some $k$, then

1. there is an eigenvalue $\lambda_{p f}$ of $A$ that is real and positive, with positive left and right eigenvectors
2. for any other eigenvalue $\lambda$, we have $|\lambda|<\lambda_{p f}$
3. the eigenvalue $\lambda_{p f}$ has multiplicity one
4. no other eigenvector has all positive (moreover non-negative) entries: they contain at least one negative or non real-valued entry
5. $\lim _{k \rightarrow \infty} \frac{A^{k}}{\lambda_{p f}^{k}}=\frac{1}{v^{T} w} v w^{T}$ where $v$ and $w$ are the left and right eigenvectors corresponding to $\lambda_{p f}$

- the eigenvalue $\lambda_{p f}$ is called the Perron-Frobenius (PF) eigenvalue of $A$
- the associated positive (left and right) eigenvectors are called the (left and right) PF eigenvectors (and are unique, up to a scaling)


## Perron-Frobenius theorem for Markov chains

- Consider a Markov chain $X_{0}, X_{1}, \ldots$, with states in $\{1, \ldots, n\}$.
- Transition matrix $P$ such that

$$
P_{i j}=\mathbb{P}\left(X_{t+1}=i \mid X_{t}=j\right)
$$

- Let $p_{t}$ be the distribution of $X_{t}$, i.e. $\left(p_{t}\right)_{i}=\mathbb{P}\left(X_{t}=i\right)$, then

$$
p_{t+1}=P p_{t}=P^{t} p_{0}
$$

- Recall $\mathbb{1}^{T} P=\mathbb{1}^{T}$
- So $\mathbb{1}^{T}$ is a left eigenvector with eigenvalue 1 , which in fact is the PF eigenvalue of $P$
an aperiodic and irreducible Markov chain has regular transition matrix
$\star$ A Markov chain is aperiodic if return to state $i$ can occur at irregular times, i.e. there exists $n$ such that for all $n^{\prime} \geq n$,

$$
\mathbb{P}\left(x_{n^{\prime}}=i \mid x_{0}=i\right)>0
$$

* A Markov chain is irreducible if there is a non-zero probability of transitioning (even if it takes more than one step) from any state to any other state.
- For a Markov chain, the right PF eigenvector is the stationary distribution

$$
P \pi=\pi
$$

theorem. for an aperiodic and irreducible Markov chain, there is a unique stationary distribution $\pi$ that satisfy $\pi>0$ proof. there exists an integer $k$ such that $P^{k}$ has strictly positive entries if and only if the Markov chain is aperiodic and irreducible. The stationary distribution of the Markov chain is the unique Perron-Frobenius eigenvector of $P^{k}$.

- Further, $\lambda_{p f}=1>\left|\lambda_{j}\right|$ imply $p_{t} \rightarrow \pi$ no matter what the initial distribution $p_{0}$
- example 1: if the Markov chain has $k$ disconnected components, then there are $k$ eigenvalues of the same value $\lambda_{1}=\lambda_{2}=\ldots=\lambda_{k}=1$, and different stationary distribution depending on the initial position
if each component has transition matrix $P_{i}$ with stationary distribution $\pi_{i}$, such that

$$
P=\left[\begin{array}{cccc}
P_{1} & 0 & \cdots & 0 \\
0 & P_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & P_{k}
\end{array}\right] \text {, and } \pi_{i}=P_{i} \pi_{i} \text { for all } i^{\prime} \text { s }
$$

precisely,
$\star$ we know $\mathbb{1}^{T} P=\mathbb{1}^{T}$, which implies left eigenvector $\mathbb{1}$ and eigenvalue 1
$\star$ therefore, there is a corresponding right eigenvector, we call it $\pi=\left[\pi_{1}, \pi_{2}, \ldots, \pi_{k}\right]$
$\star$ then it follows that any vector that can be represented as $\pi^{\prime}=\left[a_{1} \pi_{1}, a_{2} \pi_{2}, \ldots, a_{k} \pi_{k}\right]$ for any real $a_{i}$ 's are also eigenvectors with eigenvalue 1 , since

$$
P \pi^{\prime}=\left[a_{1} P_{1} \pi_{1}, \cdots, a_{k} P_{k} \pi_{k}\right]=\left[a_{1} \pi_{1}, \cdots, a_{k} \pi_{k}\right]=\pi^{\prime}
$$

* this implies that there are $k$ linearly independent eigenvectors with eigenvalue 1 , since we can choose $a_{i}$ 's to generate such eigenvectors
- example 2: a 2-periodic Markov chain has $\lambda_{n}=-1$, and the stationary distribution does not exist the transition matrix has the following structure:

$$
P=\left[\begin{array}{cc}
0 & P_{1} \\
P_{2} & 0
\end{array}\right], \text { and } \pi_{1}=P_{1} \pi_{2} \text { and } \pi_{2}=P_{2} \pi_{1}
$$

such that $P \pi=\pi$ for $\pi=\left[\pi_{1}, \pi_{2}\right]$
precisely,
$\star$ we know $\mathbb{1}^{T} P=\mathbb{1}^{T}$, which implies left eigenvector $\mathbb{1}$ and eigenvalue 1

* therefore, there is a corresponding right eigenvector, we call it $\pi=\left[\pi_{1}, \pi_{2}\right]$ then $\pi^{\prime}=\left[\pi_{1},-\pi_{2}\right]$ has the eigenvalue $\lambda_{n}=-1$ since

$$
P \pi^{\prime}=\left[-P_{1} \pi_{2}, P_{2} \pi_{1}\right]=\left[-\pi_{1}, \pi_{2}\right]=-\pi^{\prime}
$$

* we found two eigenvectors one with eigenvalue 1 and the other with eigenvalue -1


## PageRank by GOOGLE



- Given the directed hyper link graph $G$ and its adjacency matrix $A$
- Goal: score the pages according to how important it is
- Approach 1: $s(i)=\sum_{j} A_{i j}$ (paper with many citations is important)
- Problem: one can manipulate the score by creating two pages with lots of links in between
- Solution: $s(i)=\sum_{j} \frac{1}{d_{j}} A_{i j} s(j)$
- Interpretation 1: paper cited by important papers is important
- Interpretation 2: random walk on graphs


## PageRank

- PageRank: the score vector of the nodes in a graph with (directed) adjacency matrix $A$ is the top (left) eigen vector defined as

$$
s=A D^{-1} s
$$

where $D$ is the diagonal matrix with out-degree, and $A$ is the (directed) adjacency matrix with $A_{i j}=1$ if and only if $(i, j) \in E$

- Irreducible PageRank

$$
s=\left(\alpha A D^{-1}+(1-\alpha) \frac{1}{n} 1 \mathbb{1}^{T}\right) s
$$

interpretation: at each time, with probability $1-\alpha$ the random surfer chooses to jump to any random node (for irreducibility)

- Personalized PageRank for a node $i$

$$
s_{(i)}=\left(\alpha A D^{-1}+(1-\alpha) e_{i} \mathbb{1}^{T}\right) s_{(i)}
$$

interpretation: at each time, with probability $1-\alpha$ the random web surfer chooses to jump to any node $i$ so that we learn how important each node is (the score vector $s_{(i)}$ ) with respect to node $i$

## Personalized PageRank

$$
s_{(i)}=\left(\alpha A D^{-1}+(1-\alpha) e_{i} \mathbb{1}^{T}\right) s_{(i)}
$$

- $e_{i}=[0, \ldots, 0,1,0, \ldots, 0]^{T}$
- claim 1. for $1>\alpha>0, s_{(i)}$ is unique
- proof.

$$
\begin{aligned}
s_{(i)}-\alpha A D^{-1} s_{(i)} & =(1-\alpha) e_{i} \\
\left(\mathbf{I}-\alpha A D^{-1}\right) s_{(i)} & =(1-\alpha) e_{i} \\
s_{(i)} & =(1-\alpha)\left(\mathbb{I}-\alpha A D^{-1}\right)^{-1} e_{i}
\end{aligned}
$$

- $s_{(i)}$ is uniquely determined if the matrx $\left(\mathbb{I}-\alpha A D^{-1}\right)$ is invertible
- $\left(\mathbb{I}-\alpha A D^{-1}\right)$ is invertible if all eigen values are non-zero
- $\lambda_{i}\left(\mathbb{I}-\alpha A D^{-1}\right)=1-\alpha \lambda_{i}\left(A D^{-1}\right)$
- $\lambda_{i}\left(\mathbb{I}-\alpha A D^{-1}\right) \geq 1-\alpha>0$, as $\left|\lambda_{i}\left(A D^{-1}\right)\right| \leq 1$ from Perron-Frobenius theorem


## Personalized PageRank

$$
s_{(i)}=(1-\alpha)\left(\mathbb{I}-\alpha A D^{-1}\right)^{-1} e_{i}
$$

- solving this is equivalent to solving a system of linear equations!
- Spilling Paint interpretation
- Consider a paint that is diffusing over the graph, but gets stuck at each node with some probability (because it dries)
- At any given time $t \in\{1,2, \ldots\}$ let $s^{t} \in \mathbb{R}^{n}$ denote the amount of paint that is stuck at each node that evolves according to

$$
s^{t+1}=s^{t}+(1-\alpha) r^{t}
$$

- let $r^{t} \in \mathbb{R}^{n}$ denote the amount of wet paint that is remaining at each node that diffuses according to

$$
r^{t+1}=\alpha A D^{-1} r^{t}
$$

- starting from $r^{0}=e_{i}$, we are interested in where the paint gets stuck in the end $s^{\infty}$


## Personalized PageRank

$$
\begin{gathered}
s^{t+1}=s^{t}+(1-\alpha) r^{t} \\
r^{t+1}=\alpha A D^{-1} r^{t}
\end{gathered}
$$

- We can compute $s^{\infty}$ as

$$
s^{\infty}=(1-\alpha) \sum_{t \geq 0} r^{t}=(1-\alpha) \sum_{t \geq 0}\left(\alpha A D^{-1}\right)^{t} e_{i}
$$

- useful equality that holds also for matrices (proof using diagonalization): $(\mathbb{I}-M)^{-1}=\mathbb{I}+M+M^{2}+M^{3}+\cdots$
- so,

$$
s^{\infty}=(1-\alpha)\left(\mathbb{I}-\alpha A D^{-1}\right)^{-1} e_{i}
$$

- which is exactly the same as personalized PageRank:

$$
s_{(i)}=(1-\alpha)\left(\mathbb{I}-\alpha A D^{-1}\right)^{-1} e_{i}
$$

## Personalized PageRank

- There are two ways to compute personalized PageRank $s_{(i)}$ : set of linear equations, and paint diffusion process
- the paint diffusion process gives us a nice way to simulate and approximate $s_{(i)}$ as follows:
- ignore time for now, and focus on a specific point where you have $s \in \mathbb{R}^{n}$ dried paint on each node and $r \in \mathbb{R}^{n}$ wet paint
- we are interested in the following quantity, for a given $s$ and $r$

$$
p_{s, r}=s+(1-\alpha) \sum_{t \geq 0}\left(\alpha A D^{-1}\right)^{t} r
$$

for example, $s_{(i)}=p_{0, e_{i}}$

- we will give a sequential process that produces $s(k)$ and $r(k)$ for $k \geq 1$, that preserves $p_{s(k+1), r(k+1)}=p_{s(k), r(k)}$ but reduces $r(\bar{k}+1) \leq r(k)$ such that eventually we can take $s(k)$ as our approximation for $p_{s, r}$


## Personalized PageRank

- the update rule that preserves $p_{s, r}$

$$
\begin{aligned}
s(k+1)_{u} & =s(k)_{u}+(1-\alpha) r(k)_{u} \\
r(k+1)_{u} & =0 \\
r(k+1)_{v} & =r(k)_{v}+\alpha \frac{1}{d_{u}} r(k)_{u}, \quad \text { for } v \in N(u)
\end{aligned}
$$

- Claim. $p_{s(k), r(k)}=p_{s(k+1), r(k+1)}$
- Algorithm (Approximate personalized PageRank):
- initialize $s(0)=0, r(0)=e_{i}$
- while exists a node with $r(v)>\varepsilon$
- pick $u=\arg \max _{v} r(v)$

$$
(s(k+1), r(k+1)) \leftarrow \text { update }(s(k), r(k), u)
$$

## Random walk on a graph

- Undirected Graph $G=(V, E)$
- Markov chain with $n=|V|$ states

$$
P_{i j}=\mathbb{P}\left(X_{t+1}=i \mid X_{t}=j\right)=\left\{\begin{aligned}
1 / d_{j} & \text { if }(i, j) \in E \\
0 & \text { otherwise }
\end{aligned}\right.
$$

where $d_{j}$ is the degree of node $j$

- Distribution at time $t$

$$
p_{t}(i)=\mathbb{P}\left(X_{t}=i\right)=\sum_{j} \underbrace{\mathbb{P}\left(X_{t}=i \mid X_{t-1}=j\right)}_{P_{i j}} \underbrace{\mathbb{P}\left(X_{t-1}=j\right)}_{p_{t-1}(j)}
$$

- Matrix form of $p_{t}(i)=\sum_{j} P_{i j} p_{t-1}(j)$

$$
p_{t}=P p_{t-1}
$$

- Stationary distribution

$$
\pi=P \pi
$$

- Unique if the random walk is aperiodic and the graph is connected (Perron-Frobenius Theorem)
- $\pi$ is the right Perron-Frobenius eigenvector corresponding to $\lambda_{1}=1$ and the left eigenvector is $w=\mathbb{1}$

$$
\pi=P \pi, \quad \mathbb{1}^{T}=\mathbb{1}^{T} P
$$

- claim. $\pi_{i}=d_{i} / \sum_{k} d_{k}$.
- proof. we need to show that $d_{i} / \sum_{k} d_{k}=\sum_{j} P_{i j}\left(d_{j} / \sum_{k} d_{k}\right)$ for all $i$

$$
\begin{aligned}
\sum_{j} P_{i j} \pi_{j} & =\sum_{j:(i, j) \in E} \frac{1}{d_{j}} \frac{d_{j}}{\sum_{k} d_{k}} \\
& =d_{i} / \sum_{k} d_{k}=\pi_{i}
\end{aligned}
$$

this proves that $\pi=P \pi$ for the choice of $\pi_{i}=d_{i} / \sum_{k} d_{k}$ and therefore this is a stationary distribution by Perron-Frobenius theorem, it is unique if the Markov chain is aperiodic and the graph is connected
claim. A symmetric matrix $M$ has eigenvectors that are orthogonal to each other, and can be factorized as

$$
M=U \wedge U^{T}
$$

where $\Lambda$ is a diagonal matrix with the eigenvalues in the diagonal, $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, and $U=\left[U_{1}, \ldots, U_{n}\right]$ is an orthonormal matrix, where $U_{i}^{T} U_{j}=0$ and $\left\|U_{i}\right\|=1$ for all $i \neq j$ such that $U U^{T}=U^{T} U=\mathbf{I}$. Further, $U_{i}$ 's are the eigenvectors of $M$. (we omit the proof here)
claim. $P=A D^{-1}$ is diagonalizable proof. define a symmetric matrix $M \triangleq D^{-1 / 2} A D^{-1 / 2}$

$$
P=A D^{-1}=D^{1 / 2}(\underbrace{D^{-1 / 2} A D^{-1 / 2}}_{=M}) D^{-1 / 2}=D^{1 / 2} M D^{-1 / 2}
$$

since $M$ is symmetries, it is diagonalizable with $M=U \wedge U^{T}$ where the columns of $U$ are the eigenvectors and $\Lambda$ is a diagonal matrix with eigenvalues in the diagonals. It follows that

$$
P=D^{1 / 2} U \wedge U^{T} D^{-1 / 2}
$$

among other things, this proves that $P$ is always diagonalizable, i.e. can be decomposed into $P=Q \wedge Q^{-1}$, for a diagonal matrix $\Lambda$ with eigen values in the diagonals


$$
P=\left[\begin{array}{cccc}
0 & 1 / 2 & 1 / 2 & 1 / 3 \\
1 / 3 & 0 & 0 & 1 / 3 \\
1 / 3 & 0 & 0 & 1 / 3 \\
1 / 3 & 1 / 2 & 1 / 2 & 0
\end{array}\right] \quad D=\left[\begin{array}{llll}
3 & & & \\
& 2 & & \\
& & 2 & \\
& & & 3
\end{array}\right]
$$

claim. $P=A D^{-1}$ is diagonalizable

$$
P=D^{1 / 2} U \Lambda U^{T} D^{-1 / 2}
$$

corollary. $P=A D^{-1}$ has the same eigenvalues as
$M=D^{-1 / 2} A D^{-1 / 2}$, and the left eigenvectors are the columns of $D^{1 / 2} U$ and the right eigenvectors are the rows of $U^{-1} D^{-1 / 2}$
corollary. Since the first left eigenvector of $P$ is $\mathbb{1}$, we know that the first eigenvector of $D^{-1 / 2} A D^{-1 / 2}$ corresponding to eigenvalue one is

$$
u_{1}=\frac{1}{\left\|d^{1 / 2}\right\|} d^{1 / 2}=\frac{1}{\sqrt{\sum_{i=1}^{n} d_{i}}} d^{1 / 2}
$$

for $d^{1 / 2} \triangleq\left[\sqrt{d_{1}}, \ldots, \sqrt{d_{n}}\right]$, and $\pi=D^{1 / 2} u_{1}$.
in general, reversible Markov chains are diagonalizable

- a Markov chain $P$ with stationary distribution $\pi$ is reversible if and only if it satisfies the following detailed balance equation

$$
P_{k j} \pi_{j}=P_{j k} \pi_{k}
$$

- for a reversible Markov chain $P$ with stationary distribution $\pi$,

$$
N=\Pi^{-1 / 2} P \Pi^{1 / 2}
$$

is always a symmetric matrix, where $\Pi=\operatorname{diag}(\pi)$
claim. a reversible Markov chain $P$ is diagonalizable proof. we have for some symmetric matrix $N$

$$
P=\Pi^{1 / 2} N \Pi^{1 / 2}
$$

since $N$ is symmetric, it can be diagonalized such that $N=U \Lambda U^{-1}$

$$
P=\Pi^{1 / 2} U \Lambda U^{-1} \Pi^{1 / 2}
$$

$P$ has the same eigenvalues as $N$, and the above factorization gives a eigen value decomposition of $P$ this implies $P$ is diagonalizable
claim. Let $p^{(t)}$ be the distribution of a (aperiodic and irreducible) random walk $P=A D^{-1}$ with stationary distribution $\pi$ after $t$ time steps. Then,

$$
p^{(t)}=\pi+D^{1 / 2} \sum_{i \geq 2} \lambda_{i}^{t} u_{i}\left(u_{i}^{T} D^{-1 / 2} p^{(0)}\right)
$$

where $u_{i}$ 's are the normalized eigenvectors of $D^{-1 / 2} A D^{-1 / 2}$.
proof. since $D^{-1 / 2} A D^{-1 / 2}$ is a symmetric matrix, we know from the previous claim that $D^{-1 / 2} A D^{-1 / 2}=U \wedge U^{T}$, where $U=\left[u_{1}, \ldots, u_{n}\right]$ is the orthonormal matrix with eigenvector as each column. Since $p^{(t)}=P^{t} p^{(0)}$, we have

$$
\begin{aligned}
p^{(t)} & =P^{t} p^{(0)} \\
& =\left(D^{1 / 2} D^{-1 / 2} A D^{-1 / 2} D^{-1 / 2}\right)^{t} p^{(0)} \\
& =D^{1 / 2} U \Lambda^{t} U^{T} D^{-1 / 2} p^{(0)} \\
& =D^{1 / 2}\left(\sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{T}\right) D^{-1 / 2} p^{(0)} \\
& =D^{1 / 2}\left(\lambda_{1} u_{1} u_{1}^{T}\right) D^{-1 / 2} p^{(0)}+D^{1 / 2}\left(\sum_{i=2}^{n} \lambda_{i} u_{i} u_{i}^{T}\right) D^{-1 / 2} p^{(0)}
\end{aligned}
$$

we know that $\lambda_{1}=1$ since the largest eigenvalue of $M$ is the same as the largest eigenvalue of $D^{-1 / 2} A D^{-1 / 2}$, and we also know that $u_{1}=\frac{1}{\sqrt{\sum_{i=1}^{n} d_{i}}} d^{1 / 2}$
this shows that the first term can be simplified as

$$
\begin{aligned}
D^{1 / 2}\left(\lambda_{1} u_{1} u_{1}^{T}\right) D^{-1 / 2} p^{(0)} & =\left(\frac{1}{\sum_{i=1}^{n} d_{i}}\right) d \mathbb{1}^{T} p^{(0)} \\
& =\pi
\end{aligned}
$$

this proves the desired claim

Rate of convergence
theorem. consider a random walk on an undirected graph $G=(V, E)$ that starts at a node $i$. Then, after $k$ steps of the random walk, the distribution of the random walk is $p^{(k)}=P^{k} e_{i}$, where $e_{i}$ is the standard basis vector that has one in the $i$-th entry and zeros everywhere else. Then, after $k$ steps, the probability that the random walk is at a particular node $j$ is $p_{j}^{(k)}$. The distance of this probability from the stationary distribution is then bounded by

$$
\left|p_{j}^{(k)}-\pi_{j}\right| \leq \sqrt{\frac{d_{j}}{d_{i}}}\left|\lambda_{2}(P)\right|^{k}
$$

proof. with $p^{(0)}=e_{i}$, we know that

$$
\begin{aligned}
& p_{j}^{(k)}=e_{j}^{T}\left(\pi+D^{1 / 2} \sum_{\ell=2}^{n} \lambda_{\ell}^{k} u_{\ell}\left(u_{\ell}^{T} D^{-1 / 2} e_{i}\right)\right) \text {, then } \\
& \left|p_{j}^{(k)}-\pi_{j}\right|=\left|e_{j}^{T} D^{1 / 2} \sum_{\ell=2}^{n} \lambda_{\ell}^{k} u_{\ell}\left(u_{\ell}^{T} D^{-1 / 2} e_{i}\right)\right| \\
& \leq \sqrt{\frac{d_{j}}{d_{i}}}\left|\sum_{\ell=2}^{n} \lambda_{\ell}^{k}\left(e_{j}^{T} u_{\ell}\right)\left(u_{\ell}^{T} e_{i}\right)\right| \leq\left.\sqrt{\frac{d_{j}}{d_{i}}} \lambda_{2}\right|^{k} \sum_{\ell=2}^{n}\left|e_{j}^{T} u_{\ell}\right|\left|u_{\ell}^{T} e_{i}\right|
\end{aligned}
$$

we finish the proof by showing that $\sum_{\ell=2}^{n}\left|e_{j}^{T} u_{\ell} \| u_{\ell}^{T} e_{i}\right| \leq 1$ applying Cauchy-Schwarz, we know that

$$
\begin{aligned}
\sum_{\ell=2}^{n}\left|e_{j}^{T} u_{\ell}\right|\left|u_{\ell}^{T} e_{i}\right| & \leq \sqrt{\sum_{\ell=2}^{n}\left|e_{j}^{T} u_{\ell}\right|^{2}} \sqrt{\sum_{\ell=2}^{n}\left|e_{i}^{T} u_{\ell}\right|^{2}} \\
& \leq 1 \cdot 1
\end{aligned}
$$

since $U$ is an orthonormal matrix and $\sum_{\ell=1}^{n} u_{\ell i}^{2}=1$.

- in the worst case, the error decays as $\max _{i, j} \sqrt{\frac{d_{j}}{d_{i}}}\left|\lambda_{2}\right|^{t}$
- Mixing time of a random walk is the minimum time that the error is less than $1 / e$ in the worst case starting node and ending node
- in order to guarantee $\max _{i, j} \sqrt{\frac{d_{j}}{d_{i}}}\left|\lambda_{2}\right|^{t}<1 / e$, we need

$$
t>\frac{1+\frac{1}{2} \log \left(\frac{d_{\max }}{d_{\min }}\right)}{\log \left(1 /\left|\lambda_{2}\right|\right)}
$$

examples on how fast a random walk converges to the stationary distribution
a complete graph
$\star P=(1 / n) \mathbb{1} \mathbb{1}^{T} \Rightarrow \lambda_{2}=0$
$\star$ Stationary distribution is $\pi=(1 / n) \mathbb{1}$
$\star$ Then, mixing time is 1

* Intuition: When a graph is well connected, it can reach any node fast.
a cycle graph
$\star \lambda_{2} \simeq 1-1 / n^{2}$
$\star$ Stationary distribution is $\pi=(1 / n) \mathbb{1}$
$\star$ Then, mixing time is $1 / \log \left(1 /\left(1-1 / n^{2}\right)\right) \simeq n^{2}$
$\star$ Intuition: Random walk on a line after time $t$ converges in the limit of $n \rightarrow \infty$ to a Gaussian distribution $N(0, t)$
a dumbbell
$\star$ The dumbbell graph consists of two complete graphs on $n$ vertices, joined by one edge.
$\star$ A complete graph with $n$ vertices is a graph with $n$ nodes that are connected to all the other nodes in the graph.
* $\lambda_{2} \simeq 1-1 / n^{2}$
$\star$ Then, mixing time is $1 / \log \left(1 /\left(1-1 / n^{2}\right)\right) \simeq n^{2}$
$\star$ Intuition: Consider starting the random walk at some node that is not attached to the bridge. After one step, the random walk mixes well on one side of the graph. There is a $1 / n$ chance that the random walk reaches the node attached to the bridge. And only $1 / n$ chance that it crosses the bridge. So overall the probability of crossing is about $1 / n^{2}$.


## The Laplacian Matrix

The adjacency matrix $A$ of a graph is natural but not the most useful. Eigenvalues and eigenvectors of a matrix is most useful when associated with the natural operator or the natural quadratic form

A natural operator associated with an undirected graph is the transition matrix of a natural random walk on the graph

$$
P=D^{-1} A
$$

where $D$ is a diagonal matrix with the degree of each node in the diagonal

$$
D_{i j}=\left\{\begin{aligned}
d_{i} & \text { if } i=j \\
0 & \text { if } i \neq j
\end{aligned}\right.
$$

where $d_{i}$ is the degree of node $i$, and $A$ is the adjacency matrix

$$
A_{i j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}
$$

A natural quadratic form associated with an undirected graph is the Laplacian matrix $L_{G}$, defined as

$$
L_{G}=D-A
$$

quadratic form of $L_{G}$ is useful in capturing the structure of the graph:

$$
\begin{aligned}
x^{T} L_{G} x & =\sum_{i} d_{i} x_{i}^{2}-\sum_{(i, j) \in E} 2 x_{i} x_{j} \\
& =\sum_{i} \sum_{j:(i, j) \in E} x_{i}^{2}-\sum_{(i, j) \in E} 2 x_{i} x_{j} \\
& =\sum_{(i, j) \in E} 2 x_{i}^{2}-x_{i} x_{j} \\
& =\sum_{(i, j) \in E} x_{i}^{2}+x_{j}^{2}-x_{i} x_{j} \\
& =\sum_{(i, j) \in E}\left(x_{i}-x_{j}\right)^{2}
\end{aligned}
$$

it measures how smooth the function $x$ is: $x^{T} L_{G} x$ small for smooth $x$
a few properties
$\star L_{G}$ is positive semidefinite, i.e. $x^{T} L_{G} x \geq 0$ for all $x$
$\star \mathbb{1}$ is in $L_{G}$ 's null space, i.e. $L_{G} \mathbb{1}=0$, since $\mathbb{1}$ is the most smooth
$\star$ for a set $S \subseteq V$, let $x \in\{0,1\}^{n}$ be the indicator of the set such that $x_{i}=1$ if $i \in S$. Then, $x^{T} L_{G} x$ is the cut value $\left|c\left(S, S^{c}\right)\right|$. Precisely,

$$
x^{T} L_{G} x=\frac{1}{2}\left\{\sum_{i \in S, j \in S^{c}} 1^{2}+\sum_{i \in S^{c}, j \in S} 1^{2}\right\}=\left|c\left(S, S^{c}\right)\right|
$$

Graph Laplacian for graph visualization
$\star$ drawing graphs is assigning coordinates to nodes $\left(x_{i}, y_{i}\right)$
$\star$ we might want to assign coordinates such that connected nodes are close to each other
$\star$ idea: use eigenvectors corresponding to the smallest eigen values (other than $\mathbb{1}$, which will give a trivial coordinates of placing all nodes inthe same place)

* the second smallest eigenvalue and the corresponding eigenvector minimizes the following

$$
\min _{\|x\|=1, x \perp 1} x^{T} L_{G} x=\min _{\|x\|=1, x \perp 1}\left(x_{i}-x_{j}\right)^{2}
$$

the third smallest eigenvector minimizes the same function subject to being orthogonal to $v_{1}=\mathbb{1}$ and $v_{2}$
$\star$ use $v_{2}$ and $v_{3}$ corresponding to $\lambda_{2}$ and $\lambda_{3}$, which are the smallest eigenvalues other than zero



for weighted graphs with weights $w_{i j}$ 's, we define Laplacian matrix as

$$
L_{G}=D-A
$$

where $D_{i i}=\sum_{k} w_{i k}$ and $A_{i j}=w_{i j}$ such that

$$
x^{T} L_{G} x=\sum_{(i, j) \in E} w_{i j}\left(x_{i}-x_{j}\right)^{2}
$$

Graph partitioning
how well we can separate a subset $S$ from a graph can be represented by the isoperimetric ratio of $S$

$$
\theta(S) \triangleq \frac{\left|c\left(S, S^{c}\right)\right|}{|S|}
$$

and the isoperimetric number of a graph is defined as

$$
\theta_{G} \triangleq \min _{|S| \leq n / 2} \theta(S)
$$

theorem the second smallest eigenvalue of the graph Laplaican matrix lower bounds the isoperimetric number as

$$
\frac{1}{2} \lambda_{2}\left(L_{G}\right) \leq \theta_{G}
$$

## proof of the lower bound.

consider a vector $I_{S}$ indicating the set $S$ such that

$$
I_{S}= \begin{cases}1 & \text { if } i \in S \\ 0 & \text { otherwise }\end{cases}
$$

for a vector $x$ orthogonal to $\mathbb{1}$, we know that $x^{T} L_{G} x \geq \lambda_{2} x^{T} x$. Consider $x=I_{S}-\frac{|S|}{|V|} \mathbb{1}$ which is orthogonal to $\mathbb{1}$. We know that

$$
x^{T} L_{G} x=I_{S}^{T} L_{G} I_{S}=\sum_{(i, j) \in E}\left(\left(I_{S}\right)_{i}-\left(I_{S}\right)_{j}\right)^{2}=c\left(S, S^{c}\right)
$$

also, we know that

$$
x^{T} x=|S|-|S|^{2} /|V|=|S|\left(1-\frac{|S|}{|V|}\right)
$$

this finishes the proof of the lower bound

## exercise.

## Problem 1.

(a) Suppose that $A \in \mathbb{R}^{7 \times 5}$ has rank 4 , and $B \in \mathbb{R}^{5 \times 7}$ has rank 3. What are the possible values of $\operatorname{rank}(A B)$ ? For each value $r$ that is possible, give an example, i.e., a specific $A$ and $B$ with the dimensions and ranks as given above, for which $\operatorname{rank}(A B)=r$. Try to give simple examples, and explain for each example for each value of $r$ why $A B$ has a rank of $r$.
(b) If $V$ is a subspace in $\mathbb{R}^{n}$, we define $V^{\perp}$ as the set of vectors orthogonal to every element in $V$, i.e.

$$
V^{\perp} \triangleq\left\{x \in \mathbb{R}^{n} \mid x^{T} y=0 \text { for all } y \in V\right\}
$$

For example if $V=\operatorname{span}\left(\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right)$ then $V^{\perp}=\operatorname{span}\left(\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right)$, where $\operatorname{span}\left(v_{1}, \ldots, v_{k}\right)=\left\{x \in \mathbb{R}^{n} \mid \sum_{i=1}^{k} a_{i} v_{i}\right.$ for $\left.a_{1}, \ldots, a_{k} \in \mathbb{R}\right\}$ is the subspace spanned by the set of vectors. Verify that $V^{\perp}$ is also a subspace.

## exercise.

## Problem 1. (continued)

(c) Orthonormal basis of a subspace $V$ of rank $r$ in $\mathbb{R}^{n}$ is defined as a set of $r$ vectors $\left\{u_{1}, \ldots, u_{r}\right\}$ such that each vector is normalized, i.e. $u_{i}^{T} u_{i}=1$ and each pair is orthogonal, i.e. $u_{i}^{T} u_{j}=0$ for any $i \neq j$, and they span the subspace, i.e. $\operatorname{span}\left(u_{1}, \ldots, u_{r}\right)=V$. Projection of a vector $x$ onto a subspace $V$ given an orthonormal basis matrix $U=\left[u_{1} \cdots u_{r}\right]$ is defined by a projection matrix

$$
P \triangleq U U^{T}
$$

and the projection of a vector $x$ is $P x=U U^{T} x$. Prove that all projection matrices satisfy $P^{2}=P$ and $P^{T}=P$.
(d) Show every $x \in \mathbb{R}^{n}$ can be represented as $x=v+v^{\perp}$ where $v \in V$ and $v^{\perp} \in V^{\perp}$.
(e) Show that $\operatorname{dim}(V)+\operatorname{dim}\left(V^{\perp}\right)=n$.

## exercise.

## Problem 2.

Consider a tall measurement matrix $A \in \mathbb{R}^{m \times n}$ with $m>n$. Given a signal $x \in \mathbb{R}^{n}$, the output of the measurement is $y=A x$. However, instead of $y$ itself, we observe a corrupted version of $y$, which we denote by $z$. $z$ and $y$ differ only in one entry. For example, if the 4 th entry is corrupted, then $y_{i}=z_{i}$ for $i \neq 4$ and $y_{4} \neq z_{4}$.

Given $A$ and $z$, we want to figure out which entry in $z$ is the corrupted one. Use MATLAB to figure out which entry is corrupted, given the following measurement matrix $A$ and corrupted measurement $z$ in the file corrupt.m.
To check if a vector $v$ is in a subspace spanned by the columns of $V$, you can use the MATLAB script: $\operatorname{rank}([V v])==\operatorname{rank}(V)$, which returns 1 if and only if $v$ is in the subspace.

## exercise.

## Problem 3.

- Consider a network of $n$ smartphones that can transmit and receive radio signals. A smartphone $i$ can choose the transmit power $P_{i}>0$. When this signal reaches a smartphone $j$ that is different from $i$, the received signal power is $G_{j i} P_{i}$.
- The signal power of $i$ at receiver $i$ is $S_{i}=G_{i i} P_{i}$.
- Assume all entries of $G$ are positive
- The interference power received at smartphone $i$ caused by interference from all other signals transmitted from other smartphones is $I_{i}=\sum_{k \neq i} G_{i k} P_{k}$.
- Signal to interference ratio (SIR) is

$$
\frac{S_{i}}{I_{i}}=\frac{G_{i i} P_{i}}{\sum_{k \neq i} G_{i k} P_{k}}
$$

- We want to set transmit powers $P_{i}$ 's such that the minimum SIR is maximized


## exercise.

Problem 3. (continued.)

- We are going to minimize the maximum interference to signal ratio, i.e.

$$
\begin{aligned}
\text { minimize } & \max _{i} \frac{(\widetilde{G} P)_{i}}{P_{i}} \\
\text { subject to } & P>0
\end{aligned}
$$

where

$$
\tilde{G}_{i j}=\left\{\begin{aligned}
G_{i j} / G_{i i} & \text { if } i \neq j \\
0 & \text { if } i=j
\end{aligned}\right.
$$

- We saw in the proof of Perron-Frobenius theorem that the optimal solution of the following problem is the PF eigenvalue $\lambda_{p f}$ and the corresponding eigen vector

$$
\begin{aligned}
\operatorname{maximize} & \delta \\
\text { subject to } & A x \geq \delta x \text { for some } x>0
\end{aligned}
$$

- The solution to the above problem is also the solution to the following problem:

$$
\operatorname{minimize} \quad \max _{i} \frac{(A x)_{i}}{x_{i}}
$$

## exercise.

Problem 3. (continued.)

- Then, the solution of minimizing the maximum interference problem can be solved by computing the PF eigenvector of $\widetilde{G}$ and using it to assign power $P_{i}$ 's.
- It follows that the maximum possible SIR is $1 / \lambda_{p f}$, and with optimal power allocation, all SIR's are the same.
(a) For two matrices $G 1$ and $G 2$ given in the file power.m, use MATLAB to compute $\widetilde{G} 1$ and $\widetilde{G} 2$. Using the function eig $(\cdot)$, compute the spectral gap of two matrices $\widetilde{G} 1$ and $\widetilde{G} 2$ :

$$
\frac{\lambda_{1}(\tilde{G} 1)-\lambda_{2}(\tilde{G} 1)}{\lambda_{1}(\tilde{G} 1)}
$$

Feel free to use the skeleton given in power.m.

## exercise.

Problem 3. (continued.)
(b) Start with two random vectors of dimension 20: $x=r a n d(20,1)$ and $\mathrm{y}=\mathrm{rand}(20,1)$. For each matrices $\widetilde{G} 1$ and $\widetilde{G} 2$, use the following algorithm to compute the Perron-Frobenius eigen vector and plot the residual error as a function of the number of iterations. At each iteration compute $x=\widetilde{G} 1 x$ and $y=\widetilde{G} 1 y$. Compute the residual error at iteration $i$ : $\mathrm{e}(\mathrm{i})=\operatorname{norm}(x / \operatorname{norm}(x)-$ $y / \operatorname{norm}(y))$. Plot e(i) as a function of $i$ for $i \in\{1,2, \ldots, 100\}$ for both $\widetilde{G} 1$ and $\widetilde{G} 2$.
(c) Using the result on the spectral gap, explain why one converges faster to the Perron-Frobenius eigenvector than the other.

## exercise.

Problem 4. For an undirected graph $G=(V, E)$, let $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$ be the eigenvalues of the adjacency matrix $A$, where

$$
A_{i, j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}
$$

Let $d_{\text {ave }}=\frac{1}{n} \sum_{i} d_{i}$ be the average degree of the graph and $d_{\max }$ be the maximum degree.
Prove that

$$
d_{\text {ave }} \leq \lambda_{1} \leq d_{\max }
$$

## exercise.

## Problem 5.

Social balance theory studies relationships between pairs of people in a group. There are two types of relationships between a pair, positive and negative. Such relationships are represented using signed undirected graph $G=(V, E, S)$ where $V$ is the set of nodes representing each person in the group, $E$ is the set of edges representing interactions between pairs of people, and $S: V \times V \rightarrow\{+1,-1\}$ where $S_{i j} \in\{+1,-1\}$ is the type of the relationship between a pair $(i, j) \in E$.

a balanced signed graph

an unbalanced signed graph

A signed graph is said to be balanced if any cycle in the graph has even number of negative edges. Prove that a signed graph is balanced if and only if there exists a partition of the edges into two sets $A$ and $B$ such that every edge within $A$ are positive edges, every edge within $B$ are also positive edges, and every edge across $A$ and $B$ are negative edges.

