4. Spectral methods

Linear algebra review

@ Markov chain

Perron-Frobenius theorem

@ Random walk on graphs

PageRank axioms

(]

Graph Laplacian matrix
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Spectral methods for network problems

@ Motivating example:
e PageRank by GOOGLE

PageRank

@ Problem: given a search query, rank web pages according to how
relevant they are

o |dea: random walk on graphs
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@ Motivating example:

@ Spectral Graph Partitioning

@ Problem: given a graph of interactions, cluster the nodes as to group

connected components together
@ Idea: minimize conductance %
where e(A) =3",ca > jev €
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@ Motivating example:
@ Spectral Clustering [Tamuz et al. 2011]

!lll&l!;lll.

@ Problem: cluster N items in high-dimensional spaces

@ |dea: use pair-wise similarity graph
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Linear algebra review

@ Vector space R"

» closed under addition:
forallz e R"and y e R*, z +y € R"
» closed under scalar multiplication:
forallz e R" and c € R, cz € R"

v) £ Zuiw =uTy
B

Jul —ﬁ

[(w, v)| < lull{v]]

@ Inner product

o Euclidean norm

e Cauchy-Schwarz inequality

Jullllv]
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» Subspace is a subset of a vector space which is itself a vector space
» Matrix A € R**™
» Range of a matrix is a subspace defined as

{Au|u e R™}

It is a subspace spanned by columns of A

» Rank of a matrix A is the dimension of the range of A

> a set of vectors {v1,..., U} is independent if and only if any v;
cannot be represented as a linear combination of other vectors, i.e.

v+t F gy >0 =0 =-=aq =0
> a set of vectors {v1,..., vk} is a basis for a vector space V' if and only
if
* {v1,...,w} span V,ie. v =span({v1,...,w}); and
* {v1,...,u} is independent

for any vector space, the number of vectors in the basis is the same as
the rank
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the nullspace of a matrix A € R™"*™ is defined as
null(A) ={z e R"| Az = 0}
which is the set of vectors orthogonal to all rows in A

fact 1. rank(A) = rank(A7)
fact 2. rank(A) is the maximum number of independent columns (or rows) of
A
fact 3. rank(A) < min(m, n)
fact 4. rank(A) + dim(aull(A)) =m
interpretation: consider y = Az where we apply matrix A to an input
vector = to get an output vector y
» m is the degrees of freedom in z
» dim(null(A)) is the number of degrees of freedom crushed to zero by
applying A
» rank(A) is the number of degrees of freedom in the output y
fact 5. rank(B) — dim(null(4)) < rank(AB) < min(rank(A),rank(B))
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a matrix A € R™*" is full rank if and only if rank(A) = min(m, n)

* even if A and B are full rank, AB might not be full rank (e.g.
low-rank factorization)

* even if AB is full rank, either one of A and B might not be full rank

* if A and B have empty null spaces, then AB has an empty null space

* give a non-zero matrix A such that A% = 0 is a all-zeros matrix

if Z(Az,z) =0 for all z € R", i.e. all vectors are eigenvectors, then
what can we say about A?
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e Eigenvectors and eigenvalues
» XA € Cis an eigenvalue of A € R"*" if

Av = v

and any such v is called an eigenvector of A.
» If v is an eigenvector of A, then so is av.
» Even when A is real, eigenvalue A and eigenvector v can be complex
» Rank of A is the number of non-zero eigenvalues
@ Scaling interpretation (assume A € R for now)
» if v is an eigenvector, it is scaled by A: Av = Av.
> if £ = c1v1 + o, then Az = ci A1 + o) vs.

Ax

Av
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» scaling interpretation
* X > 0: Av point in the same direction as v
* A < 0: Av point in opposite direction as v
* |A| < 1: Av smaller than v
* |A| > 1 Av larger than v

» eigenvectors are not unique when multiple eigenvalues have same value

b 3] [

» symmetric matrices have real eigenvalues and eigenvectors
Av = Av
Ao* =v* AT
Mo*y =0 ATy
but we also have Av*v = v* ATy

since v*v is a real number, we can conclude that A = \*

» it is not immediately clear why eigenvalues and eigenvectors play
important role in discrete mathematics; eigenvalues have many
equivalent characterizations, and perhaps these equivalent
representations shine a light on why they are significant
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the Rayleigh quotient of a non-zero vector z with respect to a matrix
A is defined as the ratio

zT Ax

zTz

theorem. let v be the one that maximizes the Rayleigh quotient of a
symmetric matrix A. Then v is an eigenvector with the eigenvalue
equal to the Rayleigh quotient, and this eigenvalue is the largest
eigenvalue of A.

proof. we solve the unconstrained maximization by setting the
gradient to zero

BIzTT“f _ —(zTAz)2z + (zTz)2Az — 0
oz (zTz)?
this gives
zT Az
Az = (a:Ta: ):17

which implies that the maximizer is a eigenvector, and that the
Rayleigh quotient is equal to the largest eigenvalue
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Courant-Fischer theorem. let A be a symmetric matrix with
eigenvalue Ay > Ay > --- > A, then

. zT Az
A = min max —n—
HeR dim(H)=n—k+1 zcH zTz

zT Az

max min —5
HeRr dim(H)=k z€H x'z

proof. here we only prove the second equation.

* A symmetric matrix has a orthogonal and normalized eigenvectors
{v1,...,vn}. Any subspace H that has dimension k has a non-empty
intersection with the subspace spanned by {v,...,v,}. Let ¢ be a
vector in this subspace such that z = )", a,v; for some scalars a;'s.
Then,

. D DU 8 < 3
T - n 2 > k
zTz D%

mTAm

it follows that minmeH
Az

< Ag for any k dimensional H and in

particular mingecy < M And we know this can be achieved with
equality by choosmg H = span({vi,..., u}). This proves that

z” Az
zTz

Ar = MaXpgey, Milgey
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Application in natural language processing

@ we say two words co-occur if they are used together in a sentence

@ given a dataset (e.g. Wikipedia), we can build a co-occurrence matrix
of all the words in the vocabulary

@ consider a corpus: { | like deep learning. | like NLP. | enjoy flying. }
e my vocabulary is {l, like, enjoy, deep, learning, NLP, flying }

02100000
20010100
10000010

c_|0o1too01000

00010001
01000001
00100001
000011 10
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Application in natural language processing

@ consider a corpus: { | like deep learning. | like NLP. | enjoy flying. }

08|

06|

04}

02}

00}

for i in xrange(len(words)):
plt.text(u[i,0], U[i,1], words[i])

like
enjoy

learnig

flying

nEpeP
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Application in natural language processing

@ "An improved model of semantic similarity based on lexical
co-occurrence’, Rhode et al. 2005

GG

= CHOBENOSE

u STOLE!
®STEAL
©STOLE

DSTEALING

EYE
DOG
PUPPY *TAKE
KITTEN oSeYaR
ou:

ING WTAKEN TN
o TOOK

= THARABT
uSHOWN
©SHOWED =EATENT
oSHOWING oenZAE

*SHOW

"CRQ¥Row

QGREW

OGROWING
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Application in natural language processing

@ "An improved model of semantic similarity based on lexical
co-occurrence”’, Rhode et al. 2005

«DRIVER
JANITOR
©DRIVE « SWIMMER *
o STUDENT
CCLEAN « TEACHER
«DOCTOR
*BRIDE
oSWIM
« PRIEST
oLEARN  OTEACH
OMARRY
o TREAT oPRAY
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Application in natural language processing

@ word vector analogies task

a:b:c:?

@ man : woman :: king : 7

@ solution
d = argmax(z, — T, + mc)Txi
1
.
0.75 . king
05
woman
0.25 man
0
0 0.25 05 075 1
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Application in natural language processing

@ man : woman
T T T T T T T T T T
05F theiress T
!
0.4 II g
I niece ! - countess
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1 diste? | '
[N T
02 Tt :J ;! empress
1 | P /
7
04k b | f' r madam ) i
- - / T
| { heir T
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Application in natural language processing

@ copmany : ceo

08 T T T T T
0.6
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Application in natural language processing

@ superlatives

05 T T T T T T
_ _ - — — slowest
0.4} P B
_ “slower _ _ _ - — — —-shortest
. =
- ~‘shorter
03 - rd -
slow~ 7
-
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Application in natural language processing

Expression Nearest token
Paris - France + Italy Rome
bigger - big + cold colder
sushi - Japan + Germany bratwurst
Cu - copper + gold Au
Windows - Microsoft + Google Android
Montreal Canadiens - Montreal + Toronto | Toronto Maple Leafs
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Markov chain (discrete time, finite state, homogeneous)

discrete time t=1,2,. ..

n states

random process X; takes one of n states

Markov chain: X; is conditionally independent of the past give X;_;
transition probability P; = P(X; 11 = j|X; = 1)

p(t+1) = Pp()

» example: random walk on a graph

vV vy VY VvYyy

0 1/2 1/2 1/3
O © 1/3 0 0 1/3
1/3 0 0 1/3
1/3 1/2 1/2 0

P(X; = 1) 1 0 1/6+1/6+1/9
P(X;=2)| |o| [1/3 1/9

P(X;=3)| — |o|® [1/3]" 1/9 v
P(X; = 4) o] |1/3 1/6+1/6
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Stationary distribution
» conditional probability sums to one: E]. P;=1
» rewriteas [11 ... 1I]P=[11 ... 1]
[L11...1]is a left eigenvector of P with eigenvalue 1.
» there is a corresponding eigenvector with eigenvalue 1. Let’s call it
p=[p1p2 - Pa]”.
p=~PFp.

> interpretation. this eigenvector is called the stationary distribution
of a Markov chain P.
* If p(0) = p, then p(t) = P'p = P! (Pp) = p'~'p = p for all ¢.
* in the limit as time gors to infinity, lim;—, e p(t) = lim; o P'p(0) = p
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(1 (2) 0 1/dy 1/ds 1/da
p_ |V 0 0 1/d
“l1d, o 0 1/ds

e o 1/dy dpfdy 1/d3 0O

example: random walk on an undirected graph
> Pji = 1/d¢ if (1.,]) ckE
» sanity check
*is[l1--- 1P =[11---1]?
* what is the right eigenvector?

» the stationary distribution unique if and only if
* graph is connected and
* graph is aperiodic
proof uses Perron-Frobenius theorem, and we will prove it formally later
in this note
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Perron-Frobenius theorem

@ We say a matrix or a vector is

» positive if all its entries are positive
» nonnegative if all its entries are nonnegative

@ we use notation z > y (z > y) to mean z — y is entrywise positive
(nonnegative)

@ Basic facts

» if A>0and z >0, then Az > 0.

» conversely, if for all z > 0, we have Az > 0, then we can conclude
A>0.

» in otherwords, matrix multiplication preserves nonnegativity if and only
if the matrix is nonnegative

» if A>0and z >0, z #0, then Az > 0.

» conversely, if whenever z > 0, z # 0, we have Az > 0, then we can
conclude A > 0.
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@ Regular nonnegative matrices

» suppose A € R™ ™ with A > 0.
» A is called regular if for some k£ > 1, A >0
» meaning in the example of random walk on graphs
* there is an edge from 7 to j whenever A;; > 0
* then (A*); > 0 if and only if there is a path of length & from i to j

* A is regular if for some k there is a path of length k from every node
to every other node

@ examples:
- |10 and 0 1 are not regula
o 1|21 |{ | 2re not regular.

is regular.

v
==
—= O
O = =
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Perron-Frobenius theorem

» Assume A is nonnegative and A* > 0 for some k, then

1.

w

there is an eigenvalue A, of A that is real and positive, with positive
left and right eigenvectors

for any other eigenvalue X, we have |A] < Ay

the eigenvalue Aps has multiplicity one

no other eigenvector has all positive (moreover non-negative) entries:
they contain at least one negative or non real-valued entry

limg_ oo % = L vwT where v and w are the left and right
P

vTw

eigenvectors corresponding to Aps

the eigenvalue A, is called the Perron-Frobenius (PF) eigenvalue of A

the associated positive (left and right) eigenvectors are called the (left
and right) PF eigenvectors (and are unique, up to a scaling)
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Perron-Frobenius theorem for Markov chains

» Consider a Markov chain X, Xi,. .., with states in {1,...,n}.
» Transition matrix P such that

Py = P(Xp11 = 1| Xy = j)
> Let p; be the distribution of X, i.e. (pt); = P(X; = 1), then
Pi+1 = Ppi = P'po
» Recall 1TP =17

» So 17 is a left eigenvector with eigenvalue 1, which in fact is the PF
eigenvalue of P
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an aperiodic and irreducible Markov chain has regular transition
matrix
* A Markov chain is aperiodic if return to state ¢ can occur at irregular
times, i.e. there exists n such that for all n’ > n,

P(zy =iz =1) >0

* A Markov chain is irreducible if there is a non-zero probability of
transitioning (even if it takes more than one step) from any state to
any other state.

» For a Markov chain, the right PF eigenvector is the stationary
distribution
Pr=m

theorem. for an aperiodic and irreducible Markov chain, there is a
unique stationary distribution 7 that satisfy = > 0
proof. there exists an integer k such that P* has strictly positive
entries if and only if the Markov chain is aperiodic and irreducible. The
stationary distribution of the Markov chain is the unique
Perron-Frobenius eigenvector of P¥.

» Further, Ayy =1 > |A;| imply ps — 7 no matter what the initial
distribution pg
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» example 1: if the Markov chain has k disconnected components,
then there are k eigenvalues of the same value
A1 = Ay = ... = A = 1, and different stationary distribution
depending on the initial position
if each component has transition matrix P; with stationary distribution
i, such that

P, 0 - 0
0 P, - 0

P=1. . ) . , and m; = P;m; for all ¢'s
0 0 ... P

precisely,
* we know 17P =17, which implies left eigenvector 1 and eigenvalue 1
* therefore, there is a corresponding right eigenvector, we call it

m=[m1, T2, ..., k]
* then it follows that any vector that can be represented as
m' = [a171, azma, . .., axmi] for any real a;'s are also eigenvectors with

eigenvalue 1, since
! !
Pr' =lai Py, -, ae Pemi] = [aame, -+, aeme] =7

* this implies that there are k linearly independent eigenvectors with
eigenvalue 1, since we can choose a;'s to generate such eigenvectors
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» example 2: a 2-periodic Markov chain has A, = —1, and the
stationary distribution does not exist

the transition matrix has the following structure:

0 P
P = |:p2 01:| , and w1 = Pim and my = Pom

such that Pm = w for m = [m1, m2]

precisely,
* we know 17P =17, which implies left eigenvector 1 and eigenvalue 1
* therefore, there is a corresponding right eigenvector, we call it

m = [m1, 2]

then 7' = [m1, —m2] has the eigenvalue A, = —1 since

Pﬂ'l = [—Plﬂ'z, P27l'1] = [—7!'1,7!'2] = —ﬂ'l

* we found two eigenvectors one with eigenvalue 1 and the other with
eigenvalue —1
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PageRank by GOOGLE
o-e
8 p i gm D

PageRank

Given the directed hyper link graph G and its adjacency matrix A
Goal: score the pages according to how important it is

Approach 1: s(3) = Zj A (paper with many citations is important)
Problem: one can manipulate the score by creating two pages with lots
of links in between

> Solution: s(i) = 3=, dl]Aijs(j)

» Interpretation 1: paper cited by important papers is important

» Interpretation 2: random walk on graphs

vV vy vVvYyYy
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PageRank

e PageRank: the score vector of the nodes in a graph with (directed)
adjacency matrix A is the top (left) eigen vector defined as

s=AD!s
where D is the diagonal matrix with out-degree, and A is the
(directed) adjacency matrix with A;; = 1 if and only if (¢,5) € E
@ Irreducible PageRank

s=(adD™! + (1 —a)%]l]lT)s

interpretation: at each time, with probability 1 — a the random surfer
chooses to jump to any random node (for irreducibility)
@ Personalized PageRank for a node ¢

8(3) = (aAD_l + (1- a)eZ-]lT) 5(1)

interpretation: at each time, with probability 1 — a the random web
surfer chooses to jump to any node 7 so that we learn how important
each node is (the score vector s(;)) with respect to node %
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Personalized PageRank

S(5) = (aAD_:L + (1- a)ei]lT) 8(1)

¢ =1[0,...,0,1,0,...,0T
o claim 1. for 1 > a > 0, s(; is unique

@ proof.

SG) — aAD_ls(i) = (1-a)e

I-aAD Nsuyy = (1-a)e

S@) = (1—o)(I— aAD_l)_leZ-

@ s(;) is uniquely determined if the matrx (I — a AD 1) is invertible
o (I — aAD™ 1) is invertible if all eigen values are non-zero
o Mi(I—aAD 1)=1-aX(AD™?)
e Mi(I-aAD ) >1—-a>0,as|A(AD 1) <1 from

Perron-Frobenius theorem
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Personalized PageRank

sy = (1—a)I—aAD™ ) e

@ solving this is equivalent to solving a system of linear equations!

e Spilling Paint interpretation
» Consider a paint that is diffusing over the graph, but gets stuck at each
node with some probability (because it dries)
» At any given time t € {1,2,...} let s* € R™ denote the amount of
paint that is stuck at each node that evolves according to

s = st (1 —a)rt

» let r* € R™ denote the amount of wet paint that is remaining at each
node that diffuses according to

ritl = qAD™ 1yt

» starting from 70 = e;, we are interested in where the paint gets stuck
in the end s*
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Personalized PageRank

@ We can compute s as

s® = (1—a)Zrt = (1—a)2(aAD’1)te¢

>0 t>0

e useful equality that holds also for matrices (proof using
diagonalization): (I— M) =1+ M + M2+ M3+ .
@ so,
s° = (1—a)(l-aAD 1) te

@ which is exactly the same as personalized PageRank:
si) = (1—a)I—aAD 1) e
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Personalized PageRank

@ There are two ways to compute personalized PageRank s;): set of
linear equations, and paint diffusion process

@ the paint diffusion process gives us a nice way to simulate and
approximate s;) as follows:

@ ignore time for now, and focus on a specific point where you have
s € R™ dried paint on each node and » € R™ wet paint

@ we are interested in the following quantity, for a given s and r

Psr = s+ (1—a) Z(aAD’l)tr
>0

for example, s(;) = po,e;
e we will give a sequential process that produces s(k) and r(k) for
k > 1, that preserves pg(x11),r(k+1) = Ps(k),r(k) but reduces

r(k + 1) < (k) such that eventually we can take s(k) as our
approximation for ps »
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Personalized PageRank

o the update rule that preserves p; ,

s(k+1)y = s(k)u+(1—a)r(k)y
r(lk+1), = 0

r(k+1)y = r(k)y+oa—r(k)y, forve N(u)

o Claim. pyk) r(k) = Ps(k+1),r(k+1)
e Algorithm (Approximate personalized PageRank):
> initialize s(0) =0,7(0) = e;
» while exists a node with 7(v) > ¢
> pick u = arg max, r(v)
> (s(k+1),r(k+1)) < update(s(k), r(k), uw)
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Random walk on a graph
e Undirected Graph G = (V, E)

@ Markov chain with n = | V| states

‘ , 1/d;, if(4,7) € E
Py =P(Xi1 =1 Xe =7J) = { / (J) ot}(1erzv)ise

where d; is the degree of node 7
@ Distribution at time ¢

pi(i) = P(X; = i) = 3 P(X; = 1| Xs1 = 5) P(Xe1 = 7)

¢ Py pt-1(7)
o Matrix form of p:(2) = 3=, Pypt—1(7)
Pt = Ppiq
@ Stationary distribution
T =Pn

@ Unique if the random walk is aperiodic and the graph is connected
(Perron-Frobenius Theorem)
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» 7 is the right Perron-Frobenius eigenvector corresponding to A; = 1
and the left eigenvector is w = 1

T = Pm, 1T =17pP

» claim. m; =d;/ )", di.
> proof. we need to show that d;/ 3, di = > Py(d;/ >y di) for all 4

1 4
;Piﬂrj - E’Zk]dk

J:(1g)EE

= di/zdk =
%

this proves that m = P for the choice of m; = d;/ ", di and
therefore this is a stationary distribution

by Perron-Frobenius theorem, it is unique if the Markov chain is
aperiodic and the graph is connected
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claim. A symmetric matrix M has eigenvectors that are orthogonal to
each other, and can be factorized as

M=UANUT

where A is a diagonal matrix with the eigenvalues in the diagonal,

A =diag(Aq,...,An), and U = [Us, ..., Uy] is an orthonormal
matrix, where U,T U; =0 and || U;|| = 1 for all ¢ # 5 such that

UUT = UTU =1. Further, U;'s are the eigenvectors of M. (we omit
the proof here)
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claim. P = AD™! is diagonalizable

proof. define a symmetric matrix M £ D~*/2AD~1/?

P—AD ! = D1/2(D71/2AD71/2)D71/2 — pY2yp1/2
—_———
=M

since M is symmetries, it is diagonalizable with M = UAUT where the
columns of U are the eigenvectors and A is a diagonal matrix with
eigenvalues in the diagonals. It follows that

P =DY?ypnuTp1/?

among other things, this proves that P is always diagonalizable, i.e.
can be decomposed into P = QAQ !, for a diagonal matrix A with
eigen values in the diagonals

0 1/2 1/2 1/3 3

—® 1/3 0 0 1/3 2
& P= 1/3 0 0 1/3 b= 2
1/3 1/2 1/2 0 3
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claim. P = AD! is diagonalizable

Spectral methods

P =DY?ypnuTp1/?

corollary. P = AD ! has the same eigenvalues as
M = D Y2AD~%2, and the left eigenvectors are the columns of
DY2U and the right eigenvectors are the rows of U~ D~1/2

corollary. Since the first left eigenvector of P is 1, we know that the
first eigenvector of D™Y/2AD~Y/2 corresponding to eigenvalue one is

w = 1 a2 — 1 42

[ERE TN, S

for d¥/2 £ [\/dy,...,+/dn], and m = D24, .
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in general, reversible Markov chains are diagonalizable
» a Markov chain P with stationary distribution 7 is reversible if and
only if it satisfies the following detailed balance equation

ijﬂ'j = Tk
» for a reversible Markov chain P with stationary distribution T,
N = n-Y/2pnt/?

is always a symmetric matrix, where N = diag()
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claim. a reversible Markov chain P is diagonalizable
proof. we have for some symmetric matrix N

P =nY2NnNY?
since N is symmetric, it can be diagonalized such that N = UAU !
P =nY2uAu—tnt/?

P has the same eigenvalues as N, and the above factorization gives a
eigen value decomposition of P
this implies P is diagonalizable
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claim. Let p(*) be the distribution of a (aperiodic and irreducible)
random walk P = AD~! with stationary distribution 7 after ¢ time
steps. Then,

p® = 7+ DY23" Muy(uT DY3pO)
i>2

where u;'s are the normalized eigenvectors of D~1/2AD—1/2.

proof. since D~ Y/24D~%/? is a symmetric matrix, we know from the
previous claim that D™Y/2AD~Y2 = UAUT, where U = [ui, ..., u,]
is the orthonormal matrix with eigenvector as each column. Since

p®) = Ptp(® we have

p® = pip®
_ (D1/2Dil/zADfl/szl/z)tp(o)
— pv2 UAtUTD—1/2p(O)

n
_ pue ( Z )\zuzuiT) D/2p©
=1

_ pue (AlululT)Dfl/zp(o) n Dl/z(z AzululT) Dq/zp(o)

=2
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we know that A\; = 1 since the largest eigenvalue of M is the same as
the largest eigenvalue of D™*2AD~Y/2 and we also know that

U = ln dl/Z
d;

=1
this shows that the first term can be simplified as

pl/2 <)\1'UI1U1T) DY/2p

(Zil dl)d 17p©

™

this proves the desired claim
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Rate of convergence
theorem. consider a random walk on an undirected graph
G = (V, E) that starts at a node ¢. Then, after k steps of the
random walk, the distribution of the random walk is p(¥) = P¥e;,
where e; is the standard basis vector that has one in the i-th entry and
zeros everywhere else. Then, after k steps, the probability that the
random walk is at a particular node 7 is p](-k). The distance of this
probability from the stationary distribution is then bounded by

d.
2 - ml < [ Za(P)F

proof. with p(® = e;, we know that

n
pj(’“) — ejT <7r+Dl/zz)\fug(ulTDfl/zei)) , then
£=2
n
P —ml = |&"DY2 Y] Ml D )|

IN

=2
ﬁ‘ iA]z(eTW)(WTei) < ﬁ|)‘2|ki |ej” uel|ug el
d =2 ’ a d =2 ’
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we finish the proof by showing that > e/ w|lu/ e <1
applying Cauchy-Schwarz, we know that

n n n
2 lewllud e Dl wl, | D el
=2 £=2 £=2

< 1-1

IN

. . . n
since U is an orthonormal matrix and 21:1 uf = 1.

. /a
» in the worst case, the error decays as max; ; Ef|)\2|t

» Mixing time of a random walk is the minimum time that the error is
less than 1/e in the worst case starting node and ending node

> in order to guarantee max; ; \/%|)\g|t < 1/e, we need

L+ 3 log (=)
log(1/]Xz])
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examples on how fast a random walk converges to the stationary
distribution

a complete graph

*

*
*
*

P=(1/n)11T = X, =0

Stationary distribution is m = (1/n)1

Then, mixing time is 1

Intuition: When a graph is well connected, it can reach any node fast.

a cycle graph

*

*
*
*

Spectral methods

Ao~1—1/n?

Stationary distribution is 7 = (1/n)1

Then, mixing time is 1/ log(1/(1 — 1/n?)) ~ n?

Intuition: Random walk on a line after time ¢ converges in the limit of
n — oo to a Gaussian distribution N (0, t)
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a dumbbell

*

*

*

Spectral methods

The dumbbell graph consists of two complete graphs on n vertices,
joined by one edge.

A complete graph with n vertices is a graph with n nodes that are
connected to all the other nodes in the graph.

Ay ~1—1/n?

Then, mixing time is 1/ log(1/(1 — 1/n?)) ~ n?

Intuition: Consider starting the random walk at some node that is not
attached to the bridge. After one step, the random walk mixes well on
one side of the graph. There is a 1/n chance that the random walk
reaches the node attached to the bridge. And only 1/n chance that it
crosses the bridge. So overall the probability of crossing is about 1/n2.



The Laplacian Matrix

The adjacency matrix A of a graph is natural but not the most useful.
Eigenvalues and eigenvectors of a matrix is most useful when
associated with the natural operator or the natural quadratic form

A natural operator associated with an undirected graph is the
transition matrix of a natural random walk on the graph

P=D1A
where D is a diagonal matrix with the degree of each node in the
diagonal
o d ifi=g

Dy = { 0 ifi#£g

where d; is the degree of node %, and A is the adjacency matrix
A 1 if(¢,7)€eE
Y71 0 otherwise

A natural quadratic form associated with an undirected graph is the
Laplacian matrix Ls, defined as

Lg=D-A
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quadratic form of L is useful in capturing the structure of the graph:

mTLGz = Zdimf— Z 2z z;

(1.)€EE
= Y3 - e
1 Ji(1,5)€EE (1J)EE
= Z me — T;T;
(1.5)€EE
= Z :Df +z]2 — T
(1.J)€EE
= > (@-g)
(1.J)€EE

it measures how smooth the function z is: T Lgsz small for smooth

a few properties
* L is positive semidefinite, i.e. T Lgz > 0 for all z
* 1 isin Lg's null space, i.e. Lgl =0, since 1 is the most smooth
* foraset SC V, let z € {0,1}" be the indicator of the set such that
z;=1ifi €S. Then, 27 Lgz is the cut value |c(S, S°)|. Precisely,

:z:TLGm:%{ Z 1° 4 Z } c(S, 89|

1€85,7€8° 1€5,5€S
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Graph Laplacian for graph visualization

* drawing graphs is assigning coordinates to nodes (z;, y;)

* we might want to assign coordinates such that connected nodes are
close to each other

* idea: use eigenvectors corresponding to the smallest eigen values (other
than 1, which will give a trivial coordinates of placing all nodes inthe
same place)

* the second smallest eigenvalue and the corresponding eigenvector
minimizes the following

min z” Legz = min  (z; — z;)°
||z||=1,zL1 ||z||=1,z L1

the third smallest eigenvector minimizes the same function subject to
being orthogonal to v; = 1 and w2

* use vz and vs corresponding to Az and As, which are the smallest
eigenvalues other than zero
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for weighted graphs with weights w;;'s, we define Laplacian matrix as
L = D-A

where Dy; = >, wi, and Ay = wj; such that

2IJT LG Tz = Z wij(:ci — xj)2
(t,7)€E
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Graph partitioning
how well we can separate a subset S from a graph can be represented
by the isoperimetric ratio of S
(S, S°)
||
and the isoperimetric number of a graph is defined as

8¢ = min 64(9)
[S|<n/2

6(s) 2

theorem the second smallest eigenvalue of the graph Laplaican matrix
lower bounds the isoperimetric number as

1
§>\2(LG) < b¢

proof of the lower bound.
consider a vector Is indicating the set S such that

L = {1 ifie s

0 otherwise

for a vector z orthogonal to 1, we know that z7 Lez > AazTz.

Consider z = Ig — %]l which is orthogonal to 1. We know that

el Lez = I3 Lels = Z ((Is): — ([S)j)2 =c(8,59
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also, we know that
2"z = |5|-|sP/Iv] = Is|(

this finishes the proof of the lower bound

_ 18l
V]

)



exercise.

Spectral methods

Problem 1.

(a)

Suppose that A € R7*® has rank 4, and B € R%*7 has rank 3. What
are the possible values of rank(AB)? For each value r that is possible,
give an example, i.e., a specific A and B with the dimensions and ranks
as given above, for which rank(AB) = r. Try to give simple examples,
and explain for each example for each value of » why AB has a rank of
r.

If V is a subspace in R™, we define V' as the set of vectors
orthogonal to every element in V, i.e.

vt a2 {IER”|zTy:0forally€ VY.

] f) ()

where span(vi,...,v) ={z € R"| ZL a;v; for ay,...,ar € R} is
the subspace spanned by the set of vectors. Verify that V' is also a
subspace.

For example if V = span (
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exercise.

Problem 1. (continued)

(e)

(d)
(e)

Spectral methods

Orthonormal basis of a subspace V' of rank 7 in R" is defined as a set
of r vectors {ui, ..., ur} such that each vector is normalized, i.e.
ulu; = 1 and each pair is orthogonal, i.e. uw; = 0 for any i # 7, and
they span the subspace, i.e. span(u,...,u) = V.
Projection of a vector z onto a subspace V given an orthonormal basis
matrix U = [u1 -+ ur] is defined by a projection matrix

P AyUT,

and the projection of a vector z is Pz = UUTz. Prove that all
projection matrices satisfy P?2=pand PT = P.

Show every z € R" can be represented as z = v + v where v € V.
and vt € V1.

Show that dim(V) 4+ dim(V*) = n.
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exercise.

Spectral methods

Problem 2.

Consider a tall measurement matrix A € R™*™ with m > n. Given a
signal z € R", the output of the measurement is y = Az. However,
instead of y itself, we observe a corrupted version of y, which we
denote by z. z and y differ only in one entry. For example, if the 4th
entry is corrupted, then y; = 2; for i # 4 and ya # 2.

Given A and z, we want to figure out which entry in z is the corrupted
one. Use MATLAB to figure out which entry is corrupted, given the
following measurement matrix A and corrupted measurement z in the
file corrupt.m.

To check if a vector v is in a subspace spanned by the columns of V,
you can use the MATLAB script: rank([ V v]) == rank( V'), which
returns 1 if and only if v is in the subspace.
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exercise.

Prob

>

lem 3.

Consider a network of n smartphones that can transmit and receive
radio signals. A smartphone 2 can choose the transmit power P; > 0.
When this signal reaches a smartphone j that is different from %, the
received signal power is Gj; P;.

» The signal power of ¢ at receiver 1 is S; = Gy P;.
» Assume all entries of G are positive
» The interference power received at smartphone 7 caused by interference

from all other signals transmitted from other smartphones is

I, = Zk;éi Gir Px.
Signal to interference ratio (SIR) is

S; Gy P;

Ti B Zk?ﬁi Gikpk

We want to set transmit powers P;'s such that the minimum SIR is
maximized
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exercise.

Problem 3. (continued.)

» We are going to minimize the maximum interference to signal ratio, i.e.
(GP):

B

minimize max
1
subject to P>0

where o
& Gi/Gy ifi#g
Y 0 ifi=y
» We saw in the proof of Perron-Frobenius theorem that the optimal
solution of the following problem is the PF eigenvalue A,¢ and the
corresponding eigen vector
maximize )
subject to Az > dz for some z > 0
» The solution to the above problem is also the solution to the following
problem:
(A:r,)l
Z;

minimize max
3

subject to z>0
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exercise.

Problem 3. (continued.)

» Then, the solution of minimizing the maximum interference problem
can be solved by computing the PF eigenvector of G and using it to
assign power P;'s.

> It follows that the maximum possible SIR is 1/Ap¢, and with optimal
power allocation, all SIR’s are the same.

(a) For two matrices G1 and G2 given in the file power.m, use MATLAB
to compute G1 and G2. Using the function eig(-), compute the
spectral gap of two matrices G1 and G2:

M(G1) — A(G1)
A(G1)

Feel free to use the skeleton given in power .m.
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exercise.

Problem 3. (continued.)

(b) Start with two random vectors of dimension 20: x=rand(20,1) and
y=rand (20,1). For each matrices G1 and G2, use the following
algorithm to compute the Perron-Frobenius eigen vector and plot the
residual error as a function of the number of iterations.

At each iteration compute z = Glz and Yy = ély. Compute the
residual error at iteration ¢: e(i) = norm(z/norm(z) -
y/norm(y)). Plot e(i) as a function of 7 for ¢ € {1,2,...,100} for
both G1 and G2.

(¢) Using the result on the spectral gap, explain why one converges faster
to the Perron-Frobenius eigenvector than the other.
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exercise.

Problem 4. For an undirected graph G = (V, E), let

A1 > Ay > ... > A, be the eigenvalues of the adjacency matrix A,
where

4.1 if(g)eE
“7 71 0 otherwise

Let dyye = %Zz d; be the average degree of the graph and dy.x be
the maximum degree.
Prove that

dave S A1 S d'max-
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exercise.
Problem 5.

Social balance theory studies relationships between pairs of people in a
group. There are two types of relationships between a pair, positive
and negative. Such relationships are represented using signed
undirected graph G = (V, E, S) where V is the set of nodes
representing each person in the group, E is the set of edges
representing interactions between pairs of people, and

SV xV = {+1,—1} where Si € {+1,—1} is the type of the
relationship between a pair (¢,7) € E.

a balanced signed graph an unbalanced signed graph

A signed graph is said to be balanced if any cycle in the graph has even
number of negative edges. Prove that a signed graph is balanced if and
only if there exists a partition of the edges into two sets A and B such
that every edge within A are positive edges, every edge within B are

also positive edges, and every edge across A and B are negative edges.
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