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Spectral methods for network problems

Motivating example:
PageRank by GOOGLE

Problem: given a search query, rank web pages according to how
relevant they are
Idea: random walk on graphs
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Motivating example:
Spectral Graph Partitioning

Problem: given a graph of interactions, cluster the nodes as to group
connected components together
Idea: minimize conductance c(A;B)

minfe(A);e(B)g

where e(A) =
P

i2A
P

j2V eij
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Motivating example:
Spectral Clustering [Tamuz et al. 2011]

Problem: cluster N items in high-dimensional spaces
Idea: use pair-wise similarity graph
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Linear algebra review
Vector space Rn

I closed under addition:
for all x 2 Rn and y 2 Rn , x + y 2 Rn

I closed under scalar multiplication:
for all x 2 Rn and c 2 R, cx 2 Rn

Inner product
hu ; vi ,

X
i

uivi = uTv

Euclidean norm
kuk ,

sX
i

u2
i

Cauchy-Schwarz inequality

jhu ; vij � kuk kvk

cos � =
hu ; vi
kuk kvk
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I Subspace is a subset of a vector space which is itself a vector space
I Matrix A 2 Rn�m

I Range of a matrix is a subspace defined as

fAu ju 2 Rmg

It is a subspace spanned by columns of A
I Rank of a matrix A is the dimension of the range of A
I a set of vectors fv1; : : : ; vkg is independent if and only if any vi

cannot be represented as a linear combination of other vectors, i.e.

a1v1 + a2v2 + � � �+ akvk ) a1 = a2 = � � � = ak = 0

I a set of vectors fv1; : : : ; vkg is a basis for a vector space V if and only
if

F fv1; : : : ; vkg span V , i.e. v = span(fv1; : : : ; vkg); and
F fv1; : : : ; vkg is independent

for any vector space, the number of vectors in the basis is the same as
the rank
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the nullspace of a matrix A 2 Rn�m is defined as

null(A) = fx 2 Rm jAx = 0g

which is the set of vectors orthogonal to all rows in A

fact 1. rank(A) = rank(AT )
fact 2. rank(A) is the maximum number of independent columns (or rows) of

A
fact 3. rank(A) � min(m ;n)
fact 4. rank(A) + dim(null(A)) = m

interpretation: consider y = Ax where we apply matrix A to an input
vector x to get an output vector y

I m is the degrees of freedom in x
I dim(null(A)) is the number of degrees of freedom crushed to zero by

applying A
I rank(A) is the number of degrees of freedom in the output y

fact 5. rank(B)� dim(null(A)) � rank(AB) � min(rank(A); rank(B))
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a matrix A 2 Rm�n is full rank if and only if rank(A) = min(m ;n)
F even if A and B are full rank, AB might not be full rank (e.g.

low-rank factorization)
F even if AB is full rank, either one of A and B might not be full rank
F if A and B have empty null spaces, then AB has an empty null space

F give a non-zero matrix A such that A2 = 0 is a all-zeros matrix
F if ∠(Ax ; x ) = 0 for all x 2 Rn , i.e. all vectors are eigenvectors, then

what can we say about A?
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Eigenvectors and eigenvalues
I � 2 C is an eigenvalue of A 2 Rn�n if

Av = �v

and any such v is called an eigenvector of A.
I If v is an eigenvector of A, then so is av .
I Even when A is real, eigenvalue � and eigenvector v can be complex
I Rank of A is the number of non-zero eigenvalues

Scaling interpretation (assume � 2 R for now)
I if v is an eigenvector, it is scaled by �: Av = �v .
I if x = c1v1 + c2v2, then Ax = c1�1v1 + c2�2v2.
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I scaling interpretation
F � > 0: Av point in the same direction as v
F � < 0: Av point in opposite direction as v
F j�j < 1: Av smaller than v
F j�j > 1 Av larger than v

I eigenvectors are not unique when multiple eigenvalues have same value�
1 0
0 1

�
;

�
0 1
1 0

�
I symmetric matrices have real eigenvalues and eigenvectors

�v = Av

��v� = v�AT

��v�v = v�ATv
but we also have �v�v = v�ATv

since v�v is a real number, we can conclude that � = ��

I it is not immediately clear why eigenvalues and eigenvectors play
important role in discrete mathematics; eigenvalues have many
equivalent characterizations, and perhaps these equivalent
representations shine a light on why they are significant
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the Rayleigh quotient of a non-zero vector x with respect to a matrix
A is defined as the ratio

xT Ax
xTx

theorem. let v be the one that maximizes the Rayleigh quotient of a
symmetric matrix A. Then v is an eigenvector with the eigenvalue
equal to the Rayleigh quotient, and this eigenvalue is the largest
eigenvalue of A.

proof. we solve the unconstrained maximization by setting the
gradient to zero

@ xTAx
xT x

@x
=
�(xTAx )2x + (xTx )2Ax

(xTx )2
= 0

this gives

Ax =
�xTAx

xTx

�
x

which implies that the maximizer is a eigenvector, and that the
Rayleigh quotient is equal to the largest eigenvalue
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Courant-Fischer theorem. let A be a symmetric matrix with
eigenvalue �1 � �2 � � � � � �n , then

�k = min
H2Rn ;dim(H )=n�k+1

max
x2H

xTAx
xTx

= max
H2Rn ;dim(H )=k

min
x2H

xTAx
xTx

proof. here we only prove the second equation.
F A symmetric matrix has a orthogonal and normalized eigenvectors
fv1; : : : ; vng. Any subspace H that has dimension k has a non-empty
intersection with the subspace spanned by fvk ; : : : ; vng. Let x be a
vector in this subspace such that x =

Pn
i=k �ivi for some scalars �i ’s.

Then,

xTAx
xTx

=

Pn
i=k �

2
i �iPn

i=k �
2
i

� �k

it follows that minx2H
xT Ax
xT x � �k for any k dimensional H and in

particular minx2H
xT Ax
xT x � �k . And we know this can be achieved with

equality by choosing H = span(fv1; : : : ; vkg). This proves that
�k = maxH2Hk minx2H

xT Ax
xT x
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Application in natural language processing

we say two words co-occur if they are used together in a sentence
given a dataset (e.g. Wikipedia), we can build a co-occurrence matrix
of all the words in the vocabulary
consider a corpus: { I like deep learning. I like NLP. I enjoy flying. }
my vocabulary is {I, like, enjoy, deep, learning, NLP, flying }

C =

26666666666664

0 2 1 0 0 0 0 0
2 0 0 1 0 1 0 0
1 0 0 0 0 0 1 0
0 1 0 0 1 0 0 0
0 0 0 1 0 0 0 1
0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 1
0 0 0 0 1 1 1 0

37777777777775
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Application in natural language processing

consider a corpus: { I like deep learning. I like NLP. I enjoy flying. }
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Application in natural language processing

"An improved model of semantic similarity based on lexical
co-occurrence”, Rhode et al. 2005
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Application in natural language processing

"An improved model of semantic similarity based on lexical
co-occurrence”, Rhode et al. 2005

Spectral methods 4-16



Application in natural language processing
word vector analogies task

a : b :: c : ?

man : woman :: king : ?
solution

d = arg max
i

(xb � xa + xc)Txi
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Application in natural language processing
man : woman
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Application in natural language processing
copmany : ceo
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Application in natural language processing
superlatives
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Application in natural language processing
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Markov chain (discrete time, finite state, homogeneous)
I discrete time t=1,2,. . .
I n states
I random process Xt takes one of n states
I Markov chain: Xt is conditionally independent of the past give Xt�1
I transition probability Pji = P(Xt+1 = j jXt = i)

p(t + 1) = P p(t)

I example: random walk on a graph

1 2

3 4

P =

2664
0 1=2 1=2 1=3

1=3 0 0 1=3
1=3 0 0 1=3
1=3 1=2 1=2 0

3775
2664
P(Xt = 1)
P(Xt = 2)
P(Xt = 3)
P(Xt = 4)

3775 =

2664
1
0
0
0

3775 ;
2664

0
1=3
1=3
1=3

3775 ;
2664

1=6 + 1=6 + 1=9
1=9
1=9

1=6 + 1=6

3775 ; � � �
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Stationary distribution
I conditional probability sums to one:

P
j Pji = 1

I rewrite as [1 1 : : : 1]P = [1 1 : : : 1]
[1 1 1 : : : 1] is a left eigenvector of P with eigenvalue 1.

I there is a corresponding eigenvector with eigenvalue 1. Let’s call it
p = [p1 p2 : : : pn ]T .

p = Pp :

I interpretation. this eigenvector is called the stationary distribution
of a Markov chain P .

F If p(0) = p, then p(t) = P tp = P t�1(Pp) = pt�1p = p for all t .
F in the limit as time gors to infinity, limt!1 p(t) = limt!1 P tp(0) = p
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1 2

3 4

P =

26664
0 1=d2 1=d3 1=d4

1=d1 0 0 1=d4
1=d1 0 0 1=d4
1=d1 d2=d2 1=d3 0

37775

example: random walk on an undirected graph
I Pji = 1=di if (i ; j ) 2 E
I sanity check

F is [1 1 � � � 1]P = [1 1 � � � 1]?
F what is the right eigenvector?

I the stationary distribution unique if and only if
F graph is connected and
F graph is aperiodic

proof uses Perron-Frobenius theorem, and we will prove it formally later
in this note

Spectral methods 4-24



Perron-Frobenius theorem

We say a matrix or a vector is
I positive if all its entries are positive
I nonnegative if all its entries are nonnegative

we use notation x > y (x � y) to mean x � y is entrywise positive
(nonnegative)
Basic facts

I if A � 0 and z � 0, then Az � 0.
I conversely, if for all z � 0, we have Az � 0, then we can conclude

A � 0.
I in otherwords, matrix multiplication preserves nonnegativity if and only

if the matrix is nonnegative
I if A > 0 and z � 0, z 6= 0, then Ax > 0.
I conversely, if whenever z � 0, z 6= 0, we have Az > 0, then we can

conclude A > 0.
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Regular nonnegative matrices
I suppose A 2 Rn�n , with A � 0.
I A is called regular if for some k � 1, Ak > 0
I meaning in the example of random walk on graphs

F there is an edge from i to j whenever Aij > 0
F then (Ak )ij > 0 if and only if there is a path of length k from i to j
F A is regular if for some k there is a path of length k from every node

to every other node

examples:

I

�
1 0
0 1

�
and

�
0 1
1 0

�
are not regular.

I

241 1 1
1 0 1
1 1 0

35 is regular.
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Perron-Frobenius theorem
I Assume A is nonnegative and Ak > 0 for some k , then
1. there is an eigenvalue �pf of A that is real and positive, with positive

left and right eigenvectors
2. for any other eigenvalue �, we have j�j < �pf
3. the eigenvalue �pf has multiplicity one
4. no other eigenvector has all positive (moreover non-negative) entries:

they contain at least one negative or non real-valued entry
5. limk!1

Ak

�k
pf

= 1
vTw vwT where v and w are the left and right

eigenvectors corresponding to �pf

I the eigenvalue �pf is called the Perron-Frobenius (PF) eigenvalue of A

I the associated positive (left and right) eigenvectors are called the (left
and right) PF eigenvectors (and are unique, up to a scaling)
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Perron-Frobenius theorem for Markov chains

I Consider a Markov chain X0;X1; : : : ; with states in f1; : : : ;ng.
I Transition matrix P such that

Pij = P(Xt+1 = i jXt = j )

I Let pt be the distribution of Xt , i.e. (pt )i = P(Xt = i), then

pt+1 = Ppt = P tp0

I Recall 1TP = 1T

I So 1T is a left eigenvector with eigenvalue 1, which in fact is the PF
eigenvalue of P
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an aperiodic and irreducible Markov chain has regular transition
matrix

F A Markov chain is aperiodic if return to state i can occur at irregular
times, i.e. there exists n such that for all n 0 � n ,

P(xn0 = i jx0 = i) > 0

F A Markov chain is irreducible if there is a non-zero probability of
transitioning (even if it takes more than one step) from any state to
any other state.

I For a Markov chain, the right PF eigenvector is the stationary
distribution

P� = �

theorem. for an aperiodic and irreducible Markov chain, there is a
unique stationary distribution � that satisfy � > 0
proof. there exists an integer k such that Pk has strictly positive
entries if and only if the Markov chain is aperiodic and irreducible. The
stationary distribution of the Markov chain is the unique
Perron-Frobenius eigenvector of Pk .

I Further, �pf = 1 > j�j j imply pt ! � no matter what the initial
distribution p0
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I example 1: if the Markov chain has k disconnected components,
then there are k eigenvalues of the same value
�1 = �2 = : : : = �k = 1, and different stationary distribution
depending on the initial position

if each component has transition matrix Pi with stationary distribution
�i , such that

P =

2664
P1 0 � � � 0
0 P2 � � � 0
...

...
. . .

...
0 0 � � � Pk

3775 ; and �i = Pi�i for all i ’s

precisely,
F we know 1TP = 1T , which implies left eigenvector 1 and eigenvalue 1
F therefore, there is a corresponding right eigenvector, we call it

� = [�1; �2; : : : ; �k ]
F then it follows that any vector that can be represented as

�0 = [a1�1; a2�2; : : : ; ak�k ] for any real ai ’s are also eigenvectors with
eigenvalue 1, since

P�0 = [a1P1�1; � � � ; akPk�k ] = [a1�1; � � � ; ak�k ] = �0

F this implies that there are k linearly independent eigenvectors with
eigenvalue 1, since we can choose ai ’s to generate such eigenvectors
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I example 2: a 2-periodic Markov chain has �n = �1, and the
stationary distribution does not exist

the transition matrix has the following structure:

P =

�
0 P1

P2 0

�
; and �1 = P1�2 and �2 = P2�1

such that P� = � for � = [�1; �2]

precisely,
F we know 1TP = 1T , which implies left eigenvector 1 and eigenvalue 1
F therefore, there is a corresponding right eigenvector, we call it

� = [�1; �2]
then �0 = [�1;��2] has the eigenvalue �n = �1 since

P�0 = [�P1�2;P2�1] = [��1; �2] = ��0

F we found two eigenvectors one with eigenvalue 1 and the other with
eigenvalue �1
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PageRank by GOOGLE

I Given the directed hyper link graph G and its adjacency matrix A
I Goal: score the pages according to how important it is
I Approach 1: s(i) =

P
j Aij (paper with many citations is important)

I Problem: one can manipulate the score by creating two pages with lots
of links in between

I Solution: s(i) =
P

j
1
dj

Aij s(j )
I Interpretation 1: paper cited by important papers is important
I Interpretation 2: random walk on graphs
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PageRank
PageRank: the score vector of the nodes in a graph with (directed)
adjacency matrix A is the top (left) eigen vector defined as

s = AD�1s

where D is the diagonal matrix with out-degree, and A is the
(directed) adjacency matrix with Aij = 1 if and only if (i ; j ) 2 E
Irreducible PageRank

s =
�
�AD�1 + (1 � �)

1
n
11T

�
s

interpretation: at each time, with probability 1 � � the random surfer
chooses to jump to any random node (for irreducibility)
Personalized PageRank for a node i

s(i) =
�
�AD�1 + (1 � �)ei1

T
�
s(i)

interpretation: at each time, with probability 1 � � the random web
surfer chooses to jump to any node i so that we learn how important
each node is (the score vector s(i)) with respect to node i
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Personalized PageRank

s(i) =
�
�AD�1 + (1 � �)ei1

T
�
s(i)

ei = [0; : : : ; 0; 1; 0; : : : ; 0]T

claim 1. for 1 > � > 0, s(i) is unique
proof.

s(i) � �AD�1s(i) = (1 � �)ei

(I� �AD�1)s(i) = (1 � �)ei

s(i) = (1 � �)(I� �AD�1)�1ei

s(i) is uniquely determined if the matrx (I� �AD�1) is invertible
(I� �AD�1) is invertible if all eigen values are non-zero
�i (I� �AD�1) = 1 � ��i (AD�1)

�i (I� �AD�1) � 1 � � > 0, as j�i (AD�1)j � 1 from
Perron-Frobenius theorem
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Personalized PageRank

s(i) = (1 � �)(I� �AD�1)�1ei

solving this is equivalent to solving a system of linear equations!

Spilling Paint interpretation
I Consider a paint that is diffusing over the graph, but gets stuck at each

node with some probability (because it dries)
I At any given time t 2 f1; 2; : : :g let s t 2 Rn denote the amount of

paint that is stuck at each node that evolves according to

s t+1 = s t + (1� �)r t

I let r t 2 Rn denote the amount of wet paint that is remaining at each
node that diffuses according to

r t+1 = �AD�1r t

I starting from r0 = ei , we are interested in where the paint gets stuck
in the end s1
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Personalized PageRank

s t+1 = s t + (1 � �)r t

r t+1 = �AD�1r t

We can compute s1 as

s1 = (1 � �)
X
t�0

r t = (1 � �)
X
t�0

(�AD�1)tei

useful equality that holds also for matrices (proof using
diagonalization): (I�M )�1 = I + M + M 2 + M 3 + � � �

so,
s1 = (1 � �)(I� �AD�1)�1ei

which is exactly the same as personalized PageRank:

s(i) = (1 � �)(I� �AD�1)�1ei
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Personalized PageRank

There are two ways to compute personalized PageRank s(i): set of
linear equations, and paint diffusion process
the paint diffusion process gives us a nice way to simulate and
approximate s(i) as follows:
ignore time for now, and focus on a specific point where you have
s 2 Rn dried paint on each node and r 2 Rn wet paint
we are interested in the following quantity, for a given s and r

ps;r = s + (1 � �)
X
t�0

(�AD�1)tr

for example, s(i) = p0;ei

we will give a sequential process that produces s(k) and r(k) for
k � 1, that preserves ps(k+1);r(k+1) = ps(k);r(k) but reduces
r(k + 1) � r(k) such that eventually we can take s(k) as our
approximation for ps;r
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Personalized PageRank

the update rule that preserves ps;r

s(k + 1)u = s(k)u + (1 � �)r(k)u

r(k + 1)u = 0

r(k + 1)v = r(k)v + �
1
du

r(k)u ; for v 2 N (u)

Claim. ps(k);r(k) = ps(k+1);r(k+1)

Algorithm (Approximate personalized PageRank):
I initialize s(0) = 0; r(0) = ei
I while exists a node with r(v) > "
I pick u = arg maxv r(v)
I (s(k + 1); r(k + 1)) update(s(k); r(k);u)
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Random walk on a graph
Undirected Graph G = (V ;E)
Markov chain with n = jV j states

Pij = P(Xt+1 = i jXt = j ) =

(
1=dj if (i ; j ) 2 E

0 otherwise

where dj is the degree of node j
Distribution at time t

pt (i) = P(Xt = i) =
X
j

P(Xt = i jXt�1 = j )| {z }
Pij

P(Xt�1 = j )| {z }
pt�1(j )

Matrix form of pt (i) =
P

j Pijpt�1(j )

pt = Ppt�1

Stationary distribution
� = P�

Unique if the random walk is aperiodic and the graph is connected
(Perron-Frobenius Theorem)
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I � is the right Perron-Frobenius eigenvector corresponding to �1 = 1
and the left eigenvector is w = 1

� = P� ; 1T = 1TP

I claim. �i = di=
P

k dk .
I proof. we need to show that di=

P
k dk =

P
j Pij (dj =

P
k dk ) for all i

X
j

Pij�j =
X

j :(i ;j )2E

1
dj

djP
k dk

= di=
X
k

dk = �i

this proves that � = P� for the choice of �i = di=
P

k dk and
therefore this is a stationary distribution
by Perron-Frobenius theorem, it is unique if the Markov chain is
aperiodic and the graph is connected
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claim. A symmetric matrix M has eigenvectors that are orthogonal to
each other, and can be factorized as

M = UΛUT

where Λ is a diagonal matrix with the eigenvalues in the diagonal,
Λ = diag(�1; : : : ; �n), and U = [U1; : : : ;Un ] is an orthonormal
matrix, where UT

i Uj = 0 and kUik = 1 for all i 6= j such that
UUT = UTU = I. Further, Ui ’s are the eigenvectors of M . (we omit
the proof here)
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claim. P = AD�1 is diagonalizable
proof. define a symmetric matrix M , D�1=2AD�1=2

P = AD�1 = D1=2(D�1=2AD�1=2| {z }
=M

)D�1=2 = D1=2MD�1=2

since M is symmetries, it is diagonalizable with M = UΛUT where the
columns of U are the eigenvectors and Λ is a diagonal matrix with
eigenvalues in the diagonals. It follows that

P = D1=2UΛUTD�1=2

among other things, this proves that P is always diagonalizable, i.e.
can be decomposed into P = QΛQ�1, for a diagonal matrix Λ with
eigen values in the diagonals

1 2

3 4

P =

2664
0 1=2 1=2 1=3

1=3 0 0 1=3
1=3 0 0 1=3
1=3 1=2 1=2 0

3775D =

2664
3

2
2

3

3775
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claim. P = AD�1 is diagonalizable

P = D1=2UΛUTD�1=2

corollary. P = AD�1 has the same eigenvalues as
M = D�1=2AD�1=2, and the left eigenvectors are the columns of
D1=2U and the right eigenvectors are the rows of U�1D�1=2

corollary. Since the first left eigenvector of P is 1, we know that the
first eigenvector of D�1=2AD�1=2 corresponding to eigenvalue one is

u1 =
1

kd1=2kd
1=2 =

1pPn
i=1 di

d1=2

for d1=2 , [
p

d1; : : : ;
p

dn ], and � = D1=2u1.
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in general, reversible Markov chains are diagonalizable
I a Markov chain P with stationary distribution � is reversible if and

only if it satisfies the following detailed balance equation

Pkj�j = Pjk�k

I for a reversible Markov chain P with stationary distribution �,

N = Π�1=2PΠ1=2

is always a symmetric matrix, where Π = diag(�)
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claim. a reversible Markov chain P is diagonalizable
proof. we have for some symmetric matrix N

P = Π1=2NΠ1=2

since N is symmetric, it can be diagonalized such that N = UΛU�1

P = Π1=2UΛU�1Π1=2

P has the same eigenvalues as N , and the above factorization gives a
eigen value decomposition of P
this implies P is diagonalizable
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claim. Let p(t) be the distribution of a (aperiodic and irreducible)
random walk P = AD�1 with stationary distribution � after t time
steps. Then,

p(t) = � + D1=2
X
i�2

�t
iui (uT

i D�1=2p(0))

where ui ’s are the normalized eigenvectors of D�1=2AD�1=2.

proof. since D�1=2AD�1=2 is a symmetric matrix, we know from the
previous claim that D�1=2AD�1=2 = UΛUT , where U = [u1; : : : ;un ]
is the orthonormal matrix with eigenvector as each column. Since
p(t) = P tp(0), we have

p(t) = P tp(0)

= (D1=2D�1=2AD�1=2D�1=2)tp(0)

= D1=2UΛtUTD�1=2p(0)

= D1=2
� nX

i=1

�iuiuT
i

�
D�1=2p(0)

= D1=2
�
�1u1uT

1

�
D�1=2p(0) + D1=2

� nX
i=2

�iuiuT
i

�
D�1=2p(0)
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we know that �1 = 1 since the largest eigenvalue of M is the same as
the largest eigenvalue of D�1=2AD�1=2, and we also know that
u1 = 1pPn

i=1
di

d1=2

this shows that the first term can be simplified as

D1=2
�
�1u1uT

1

�
D�1=2p(0) =

� 1Pn
i=1 di

�
d 1

Tp(0)

= �

this proves the desired claim
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Rate of convergence
theorem. consider a random walk on an undirected graph
G = (V ;E) that starts at a node i . Then, after k steps of the
random walk, the distribution of the random walk is p(k) = Pkei ,
where ei is the standard basis vector that has one in the i -th entry and
zeros everywhere else. Then, after k steps, the probability that the
random walk is at a particular node j is p(k)

j . The distance of this
probability from the stationary distribution is then bounded by

jp(k)
j � �j j �

s
dj

di
j�2(P)jk

proof. with p(0) = ei , we know that

p(k)
j = eT

j

�
� + D1=2

nX
`=2

�k
`u`(uT

` D�1=2ei )
�
; then

jp(k)
j � �j j =

���eT
j D1=2

nX
`=2

�k
`u`(uT

` D�1=2ei )
���

�
r

dj

di

��� nX
`=2

�k
` (eT

j u`)(uT
` ei )

��� � r
dj

di
j�2jk

nX
`=2

jeT
j u`jjuT

` ei j
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we finish the proof by showing that
Pn

`=2 jeT
j u`jjuT

` ei j � 1
applying Cauchy-Schwarz, we know that

nX
`=2

jeT
j u`jjuT

` ei j �

vuut nX
`=2

jeT
j u`j2

vuut nX
`=2

jeT
i u`j2

� 1 � 1
since U is an orthonormal matrix and

Pn
`=1 u2

`i = 1.

I in the worst case, the error decays as maxi ;j

q
dj
di
j�2j

t

I Mixing time of a random walk is the minimum time that the error is
less than 1=e in the worst case starting node and ending node

I in order to guarantee maxi ;j

q
dj
di
j�2j

t < 1=e , we need

t >
1 + 1

2 log
� dmax

dmin

�
log(1=j�2j)
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examples on how fast a random walk converges to the stationary
distribution

a complete graph
F P = (1=n)11T ) �2 = 0
F Stationary distribution is � = (1=n)1
F Then, mixing time is 1
F Intuition: When a graph is well connected, it can reach any node fast.

a cycle graph
F �2 ' 1� 1=n2

F Stationary distribution is � = (1=n)1
F Then, mixing time is 1= log(1=(1� 1=n2)) ' n2

F Intuition: Random walk on a line after time t converges in the limit of
n !1 to a Gaussian distribution N (0; t)
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a dumbbell
F The dumbbell graph consists of two complete graphs on n vertices,

joined by one edge.
F A complete graph with n vertices is a graph with n nodes that are

connected to all the other nodes in the graph.
F �2 ' 1� 1=n2

F Then, mixing time is 1= log(1=(1� 1=n2)) ' n2

F Intuition: Consider starting the random walk at some node that is not
attached to the bridge. After one step, the random walk mixes well on
one side of the graph. There is a 1=n chance that the random walk
reaches the node attached to the bridge. And only 1=n chance that it
crosses the bridge. So overall the probability of crossing is about 1=n2.
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The Laplacian Matrix
The adjacency matrix A of a graph is natural but not the most useful.
Eigenvalues and eigenvectors of a matrix is most useful when
associated with the natural operator or the natural quadratic form

A natural operator associated with an undirected graph is the
transition matrix of a natural random walk on the graph

P = D�1A

where D is a diagonal matrix with the degree of each node in the
diagonal

Dij =

�
di if i = j
0 if i 6= j

where di is the degree of node i , and A is the adjacency matrix

Aij =

�
1 if (i ; j ) 2 E
0 otherwise

A natural quadratic form associated with an undirected graph is the
Laplacian matrix LG , defined as

LG = D �A
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quadratic form of LG is useful in capturing the structure of the graph:
xTLGx =

X
i

dix 2
i �

X
(i;j )2E

2xixj

=
X

i

X
j :(i;j )2E

x 2
i �

X
(i;j )2E

2xixj

=
X

(i;j )2E

2x 2
i � xixj

=
X

(i;j )2E

x 2
i + x 2

j � xixj

=
X

(i;j )2E

(xi � xj )2

it measures how smooth the function x is: xTLGx small for smooth x

a few properties
F LG is positive semidefinite, i.e. xTLGx � 0 for all x
F 1 is in LG ’s null space, i.e. LG1 = 0, since 1 is the most smooth
F for a set S � V , let x 2 f0; 1gn be the indicator of the set such that

xi = 1 if i 2 S . Then, xTLGx is the cut value jc(S ;S c)j. Precisely,
xTLGx =

1
2

n X
i2S ;j2Sc

12 +
X

i2Sc ;j2S

12
o

= jc(S ;S c)j
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Graph Laplacian for graph visualization
F drawing graphs is assigning coordinates to nodes (xi ; yi )
F we might want to assign coordinates such that connected nodes are

close to each other
F idea: use eigenvectors corresponding to the smallest eigen values (other

than 1, which will give a trivial coordinates of placing all nodes inthe
same place)

F the second smallest eigenvalue and the corresponding eigenvector
minimizes the following

min
kxk=1;x?1

xTLGx = min
kxk=1;x?1

(xi � xj )2

the third smallest eigenvector minimizes the same function subject to
being orthogonal to v1 = 1 and v2

F use v2 and v3 corresponding to �2 and �3, which are the smallest
eigenvalues other than zero
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for weighted graphs with weights wij ’s, we define Laplacian matrix as

LG = D �A

where Dii =
P

k wik and Aij = wij such that

xT LG x =
X

(i ;j )2E

wij (xi � xj )2
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Graph partitioning
how well we can separate a subset S from a graph can be represented
by the isoperimetric ratio of S

�(S) ,
jc(S ;S c)j

jS j
and the isoperimetric number of a graph is defined as

�G , min
jS j�n=2

�(S)

theorem the second smallest eigenvalue of the graph Laplaican matrix
lower bounds the isoperimetric number as

1
2
�2(LG) � �G

proof of the lower bound.
consider a vector IS indicating the set S such that

IS =

�
1 if i 2 S
0 otherwise

for a vector x orthogonal to 1, we know that xTLGx � �2xTx .
Consider x = IS � jS j

jV j1 which is orthogonal to 1. We know that

xTLGx = I T
S LGIS =

X
(i;j )2E

((IS )i � (IS )j )2 = c(S ;S c)
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also, we know that

xTx = jS j � jS j2=jV j = jS j
�
1� jS j

jV j
�

this finishes the proof of the lower bound
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exercise.

Problem 1.
(a) Suppose that A 2 R7�5 has rank 4, and B 2 R5�7 has rank 3. What

are the possible values of rank(AB)? For each value r that is possible,
give an example, i.e., a specific A and B with the dimensions and ranks
as given above, for which rank(AB) = r . Try to give simple examples,
and explain for each example for each value of r why AB has a rank of
r .

(b) If V is a subspace in Rn , we define V? as the set of vectors
orthogonal to every element in V , i.e.

V? , fx 2 Rn j xTy = 0 for all y 2 V g :

For example if V = span

 "
1
0
0

#
;

"
0
1
0

#!
then V? = span

 "
0
0
1

#!
,

where span(v1; : : : ; vk ) = fx 2 Rn jPk
i=1 aivi for a1; : : : ; ak 2 Rg is

the subspace spanned by the set of vectors. Verify that V? is also a
subspace.
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exercise.

Problem 1. (continued)
(c) Orthonormal basis of a subspace V of rank r in Rn is defined as a set

of r vectors fu1; : : : ;urg such that each vector is normalized, i.e.
uT

i ui = 1 and each pair is orthogonal, i.e. uT
i uj = 0 for any i 6= j , and

they span the subspace, i.e. span(u1; : : : ;ur ) = V .
Projection of a vector x onto a subspace V given an orthonormal basis
matrix U = [u1 � � � ur ] is defined by a projection matrix

P , UUT ;

and the projection of a vector x is Px = UUTx . Prove that all
projection matrices satisfy P2 = P and PT = P .

(d) Show every x 2 Rn can be represented as x = v + v? where v 2 V
and v? 2 V?.

(e) Show that dim(V ) + dim(V?) = n .
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exercise.

Problem 2.
Consider a tall measurement matrix A 2 Rm�n with m > n . Given a
signal x 2 Rn , the output of the measurement is y = Ax . However,
instead of y itself, we observe a corrupted version of y , which we
denote by z . z and y differ only in one entry. For example, if the 4th
entry is corrupted, then yi = zi for i 6= 4 and y4 6= z4.

Given A and z , we want to figure out which entry in z is the corrupted
one. Use MATLAB to figure out which entry is corrupted, given the
following measurement matrix A and corrupted measurement z in the
file corrupt.m.
To check if a vector v is in a subspace spanned by the columns of V ,
you can use the MATLAB script: rank([ V v ]) == rank(V ), which
returns 1 if and only if v is in the subspace.
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exercise.

Problem 3.
I Consider a network of n smartphones that can transmit and receive

radio signals. A smartphone i can choose the transmit power Pi > 0.
When this signal reaches a smartphone j that is different from i , the
received signal power is GjiPi .

I The signal power of i at receiver i is Si = GiiPi .
I Assume all entries of G are positive
I The interference power received at smartphone i caused by interference

from all other signals transmitted from other smartphones is
Ii =

P
k 6=i GikPk .

I Signal to interference ratio (SIR) is

Si

Ii
=

GiiPiP
k 6=i GikPk

I We want to set transmit powers Pi ’s such that the minimum SIR is
maximized
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exercise.
Problem 3. (continued.)

I We are going to minimize the maximum interference to signal ratio, i.e.

minimize max
i

(eGP)i

Pi

subject to P > 0

where eGij =

�
Gij =Gii if i 6= j

0 if i = j
I We saw in the proof of Perron-Frobenius theorem that the optimal

solution of the following problem is the PF eigenvalue �pf and the
corresponding eigen vector

maximize �

subject to Ax � �x for some x > 0

I The solution to the above problem is also the solution to the following
problem:

minimize max
i

(Ax )i
xi

subject to x > 0Spectral methods 4-62



exercise.

Problem 3. (continued.)
I Then, the solution of minimizing the maximum interference problem

can be solved by computing the PF eigenvector of eG and using it to
assign power Pi ’s.

I It follows that the maximum possible SIR is 1=�pf , and with optimal
power allocation, all SIR’s are the same.

(a) For two matrices G1 and G2 given in the file power.m, use MATLAB
to compute eG1 and eG2. Using the function eig(�), compute the
spectral gap of two matrices eG1 and eG2:

�1( eG1)� �2( eG1)

�1( eG1)

Feel free to use the skeleton given in power.m.
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exercise.

Problem 3. (continued.)
(b) Start with two random vectors of dimension 20: x=rand(20,1) and

y=rand(20,1). For each matrices eG1 and eG2, use the following
algorithm to compute the Perron-Frobenius eigen vector and plot the
residual error as a function of the number of iterations.
At each iteration compute x = eG1x and y = eG1y . Compute the
residual error at iteration i : e(i) = norm(x/norm(x) -
y/norm(y)). Plot e(i) as a function of i for i 2 f1; 2; : : : ; 100g for
both eG1 and eG2.

(c) Using the result on the spectral gap, explain why one converges faster
to the Perron-Frobenius eigenvector than the other.
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exercise.

Problem 4. For an undirected graph G = (V ;E), let
�1 � �2 � : : : � �n be the eigenvalues of the adjacency matrix A,
where

Ai ;j =

�
1 if (i ; j ) 2 E
0 otherwise

Let dave = 1
n

P
i di be the average degree of the graph and dmax be

the maximum degree.
Prove that

dave � �1 � dmax :
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exercise.
Problem 5.

Social balance theory studies relationships between pairs of people in a
group. There are two types of relationships between a pair, positive
and negative. Such relationships are represented using signed
undirected graph G = (V ;E ;S) where V is the set of nodes
representing each person in the group, E is the set of edges
representing interactions between pairs of people, and
S : V �V ! f+1;�1g where Sij 2 f+1;�1g is the type of the
relationship between a pair (i ; j ) 2 E .

+
+

-

-

-
-

-

-

-

a balanced signed graph an unbalanced signed graph

A signed graph is said to be balanced if any cycle in the graph has even
number of negative edges. Prove that a signed graph is balanced if and
only if there exists a partition of the edges into two sets A and B such
that every edge within A are positive edges, every edge within B are
also positive edges, and every edge across A and B are negative edges.
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