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ABSTRACT
Anonymous messaging platforms, such as Secret, Yik Yak,
and Whisper, have emerged as important social media for
sharing one’s thoughts without the fear of being judged by
friends, family, or the public. Further, such anonymous
platforms are crucial in nations with authoritarian govern-
ments; the right to free expression and sometimes the per-
sonal safety of the author of the message depend on anonymity.
Whether for fear of judgment or personal endangerment, it
is crucial to keep anonymous the identity of the user who
initially posted a sensitive message. In this paper, we con-
sider an adversary who observes a snapshot of the spread
of a message at a certain time. Recent advances in rumor
source detection shows that the existing messaging proto-
cols are vulnerable against such an adversary. We introduce
a novel messaging protocol, which we call adaptive diffusion,
and show that it spreads the messages fast and achieves a
perfect obfuscation of the source when the underlying con-
tact network is an infinite regular tree: all users with the
message are nearly equally likely to have been the origin of
the message. Experiments on a sampled Facebook network
show that it effectively hides the location of the source even
when the graph is finite, irregular and has cycles.

Categories and Subject Descriptors
G.2.2 [Graph Theory]: Network problems, Graph algo-
rithms

Keywords
Anonymous Social Media; Rumor Spreading; Privacy

1. INTRODUCTION
Microblogging platforms form a core aspect of the fabric of

the present Internet; popular examples include Twitter and
Facebook. Users propagate short messages (texts, images,
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videos) through the platform via local friendship links. The
forwarding of messages often occurs through built-in mech-
anisms that rely on user input, such as clicking “like” or
“share” with regards to a particular post. Brevity of mes-
sage, fluidity of user interface, and trusted party commu-
nication combine to make these microblogging platforms a
major communication mode of modern times. There has
been tremendous recent interest in the privacy implications
of these platforms, as evidenced by the explosive growth of
anonymous microblogging platforms, like Secret1 [1], Whis-
per [2], and Yik Yak [3]. These platforms enable users to
share messages with friends without leaking the message au-
thor’s identity. In such applications, it is crucial to hide the
identity of the user who initially posted the message.

Existing anonymous messaging services store both mes-
sages and authorship information on centralized servers, which
makes them vulnerable to government subpoenas, hacking,
or direct company access. A more robust solution would
be to store this information in a distributed fashion; each
node would know only its own friends, and message author-
ship information would never be transmitted to any party.
Distributed systems are more robust to monitoring due to
lack of central points of failure. However, even under dis-
tributed architectures, simple anonymous messaging pro-
tocols (such as those used by commercial anonymous mi-
croblogging apps) are still vulnerable against an adversary
with side information, as proved in recent advances in ru-
mor source detection. In this work, we study in depth a
basic building block of the messaging protocol that would
underpin truly anonymous microblogging platform – broad-
casting a single message on a contact network with the goal
of obfuscating the source under strong adversarial conditions.
Specifically, we consider contact networks that represent a
social graph among users of the service.

A natural strategy for preventing source identification by
an adversary would be to spread the message as fast as possi-
ble; with reliable connection to infrastructure like the Inter-
net, this could be in principle done nearly instantaneously.
If all users receive the message instantaneously, any user is
equally likely to have been the source. However, this strat-
egy is not available in many of the key real-life scenarios we
are considering. For instance, in social networks, messages

1Since the first writing of this paper, Secret shut down.
However, we believe this is not due to lack of demand for
anonymous messaging platforms, as other similar platforms
are seeing widespread success.



are spread based on users approving the message via lik-
ing, sharing or retweeting (to enable social filtering and also
to avoid spamming) – this scenario naturally has inherent
random delays associated with when the user happens to en-
counter the message and whether or not she decides to “like”
the message. Indeed, standard models of rumor spreading
in networks explicitly model such random delays via a dif-
fusion process: messages are spread independently over dif-
ferent edges with a fixed probability of spreading (discrete
time model) or an exponential time to spread (continuous
time model).
Related work. Anonymous communication has been a
popular research topic for decades. For instance, anony-
mous point-to-point communication allows a sender to com-
municate with a receiver without the receiver learning the
sender’s identity. A great deal of successful work has emerged
in this area, including Tor [8], Freenet [5], Free Haven [7],
and Tarzan [10]. In contrast to this body of work, we ad-
dress the problem of anonymously broadcasting a message
over an underlying contact network (e.g., a social network).
Anonymous broadcast communication has been most stud-
ied in context of the dining cryptographers’ (DC) problem.
We diverge from the vast literature on this topic [4, 6, 11,
12, 23] in approach and formulation. We consider statisti-
cal spreading models rather than cryptographic encodings,
accommodate computationally unbounded adversaries, and
consider arbitrary network structures rather than a fully
connected network.

Within the realm of statistical message spreading mod-
els, the problem of detecting the origin of an epidemic or
the source of a rumor has been studied under the diffusion
model. Recent advances in [20, 19, 24, 18, 9, 13, 25, 17, 16,
14, 15] show that it is possible to identify the source within a
few hops with high probability. Drawing an analogy to epi-
demics, we refer to a person who has received the message
as ‘infected’ and the act of passing the message as ‘spread-
ing the infection’. Consider an adversary who has access
to the underlying contact network of friendship links and
the snapshot of infected nodes at a certain time. The prob-
lem of locating a rumor source, first posed in [20], naturally
corresponds to graph-centrality-based inference algorithms:
for a continuous time model, [20, 19] used the rumor cen-
trality measure to correctly identify the source after time T
(with probability converging to a positive number for large
d-regular and random trees, and with probability propor-
tional to 1/

√
T for lines). The probability of identifying the

source increases even further when multiple infections from
the same source are observed [24]. With multiple sources
of infections, spectral methods have been proposed for esti-
mating the number of sources and the set of source nodes in
[18, 9]. When infected nodes are allowed to recover as in the
susceptible-infected-recovered (SIR) model, Jordan central-
ity was proposed in [13, 25] to estimate the source. In [25],
it is shown that the Jordan center is still within a bounded
hop distance from the true source with high probability, in-
dependent of the number of infected nodes. Under natural
and diffusion-based message spreading – as seen in almost
every content-sharing platform today – an adversary with
some side-information can identify the rumor source with
high confidence. We overcome this vulnerability by asking
the reverse question: can we design messaging protocols that
spread fast while protecting the anonymity of the source?

Model. We focus on anonymous microblogging built atop
an underlying contact network, such as a network of phone
contacts or Facebook friends. In such systems, the designer
has some control over the spreading rate, by introducing ar-
tificial delays on top of the usual random delays due to users’
approval of the messages. We model this physical setup as a
discrete-time system, where any individual receiving a mes-
sage approves it immediately at the next timestep, at which
point the protocol determines how much delay to introduce
before sending the message to each of her uninfected neigh-
bors. Given this control, the system designer wishes to de-
sign a spreading protocol that makes inference on the source
of the message difficult. The assumption that all nodes are
willing to approve and pass the message is not new. Such
assumptions are common in the analysis of rumor spreading
[20, 19, 25], and our deviation from those standard models
is that we are operating in discrete time and approvals are
immediate.
Adversary. Following the adversarial model assumed in
prior work on rumor source detection [20, 19, 25], we as-
sume the adversary knows the whole underlying contact
network and, at a certain time, it observes a snapshot of
the state of all the nodes, i.e. who has received the mes-
sage thus far. This adversary is strong in the sense that
it sees the whole contact network as well as every node’s
state, but it is also limited in the sense that the adversary
is not aware of when (or from whom) a particular node re-
ceived the message. This model captures an adversary that
is able to indirectly observe the contents of users’ devices
without actively compromising the devices; for instance, if
the message in question contains the time and location of
a protest, then the adversary learns a snapshot of the in-
fection at a given point in time by observing who attends
the protest. This adversarial model also captures an adver-
sary that is able to monitor the network state more closely,
but only at a high cost. As such, it cannot afford to continu-
ously monitor state. We design a new anonymous messaging
protocol, which we call adaptive diffusion, that is inherently
distributed and provides strong anonymity guarantees under
this adversarial model. We discuss other plausible adversar-
ial models in Section 5.
Spreading. At time t = 0, a single user v∗ ∈ V starts to
spread a message on a contact network G = (V,E) where
users and contacts are represented by nodes and edges, re-
spectively. Upon receiving the message, a node can send the
message to any of its neighbors. We assume a discrete-time
system and model the delays due to user approval and in-
termittent network access via a deterministic delay of one
time unit. Therefore, a message always propagates with a
delay of at least one time unit. Our goal is to introduce
appropriate random delays into the system in order to ob-
fuscate the identity of the source v∗. After T timesteps,
let VT ⊆ V , GT , and NT , |VT | denote the set of infected
nodes, the subgraph of G containing only VT , and the num-
ber of infected nodes, respectively. At a certain time T , an
adversary observes the infected subgraph GT and produces
an estimate v̂ of the source v∗ of the message (with proba-
bility of detection PD = P(v̂ = v∗)). Since the adversary is
assumed to not have any prior information on which node
is likely to be the source, we use the maximum likelihood
estimator

v̂ML = arg max
v∈GT

P(GT |v). (1)



Figure 1: Illustration of a spread of infection when spreading
immediately (left) and under the adaptive diffusion (right).

We wish to achieve the following performance metrics.

(a) We say a protocol has an order-optimal rate of spread
if the expected time for the message to reach n nodes
scales linearly compared to the time required by the
fastest spreading protocol.

(b) We say a protocol achieves a perfect obfuscation if the
probability of source detection for the maximum likeli-
hood estimator conditioned on n nodes being infected
is bounded by

P
(
v̂ML = v∗|NT = n

)
=

1

n
+ o
( 1

n

)
. (2)

Key insights. Figure 1 (left) illustrates an example of the
spread when the message is propagated immediately upon
reception. The source is indicated by a solid circle. This
scheme spreads the message fast but the source is trivially
identified as the center of the infected subgraph if the contact
network is an infinite tree. This is true independent of the
infection size. Even if we introduce some randomness at
each node, the source will still be identified within a few
hops. This is due to the fact that the source is close to some
notion of the center of the infected subgraph [20, 25].

Since we do not know a priori when the adversary is going
to attack, the main challenge is to ensure that the source is
equally likely to be anywhere in the infection at any given
time. Figure 1 (right) illustrates the main idea of our ap-
proach: we intentionally break the symmetry around the
source. This is achieved by combining two insights illus-
trated in the two warm-up examples in Section 2. The first
insight is that nodes farther away from the source should
spread the infection faster. The second insight is that the
spread should be coordinated in order to maintain a symmet-
ric structure centered around a ‘virtual source’ node. This
leads to the source node being anywhere in the infected sub-
graph with equal probability.
Contributions. We introduce a novel messaging proto-
col, which we call adaptive diffusion, with provable author
anonymity guarantees against strong adversaries. Our pro-
tocol is inherently distributed and spreads messages fast,
i.e., the time it takes adaptive diffusion to reach n users is
at most twice the time it takes the fastest spreading scheme
which immediately passes the message to all its neighbors.

We further prove that adaptive diffusion provides perfect
obfuscation of the source when applied to regular tree con-
tact networks. The source hides perfectly within all infected

users, i.e., the likelihood of an infected user being the source
of the infection is equal among all infected users. For a more
general class of graphs which can be finite, irregular and have
cycles, we provide results of numerical experiments on real-
world social networks and synthetic networks showing that
the protocol hides the source at nearly the best possible level
of obfuscation.
Organization. The remainder of this paper is organized as
follows. To warm up, we introduce, in Section 2, two mes-
saging protocols customized for lines and trees. Combining
the key insights of these two approaches, we introduce, in
Section 3, a new messaging protocol called adaptive diffusion
and analyze its performance theoretically and empirically, in
Section 4. Section 5 discusses limitations and future work.

2. WARM-UP EXAMPLES
In this section, we discuss two special contact networks

as warm-up examples: a line and a regular tree with de-
gree larger than two. We provide two fully-distributed, cus-
tomized messaging protocols, one for each case, and show
that these protocols spread messages quickly while effec-
tively hiding the source. However, these protocols fail to
protect the identity of the source when applied to a broader
class of contact networks. In particular, the “Line Proto-
col”, which is developed for line contact networks, reveals
the source with high probability when applied to a regu-
lar tree with degree larger than two. Similarly, the “Tree
Protocol”, developed for regular tree contact networks with
degree greater than two, reveals the source with high prob-
ability when applied to a line. In Section 3, we introduce a
novel messaging protocol, which we call adaptive diffusion,
that combines the key ideas behind the two approaches pre-
sented in this section.

2.1 Spreading on a line
Given a contact network of an infinite line, consider the

following deterministic spreading protocol. At time t = 1,
the source node infects its left and right neighbors. At
t ≥ 2, the leftmost and rightmost infected nodes spread the
message to their uninfected neighbors. Thus, the message
spreads one hop to the left and one hop to the right of the
true source at each timestep. This scheme spreads as fast
as possible, infecting NT = 2T + 1 nodes at time T , but the
source is trivially identified as the center of the infection.

Adding a little bit of randomness can significantly de-
crease the probability of detection. Consider a discrete-
time random diffusion model with a parameter p ∈ (0, 1)
where at each time t, an infected node infects its uninfected
neighbor with probability p. Using the analysis from [20]
where the continuous time version of this protocol was stud-
ied, we can show that this protocol spreads fast, infecting
E[NT ] = 2pT + 1 nodes on average at time T . Further,
the probability of source detection PD = P(v̂ML = v∗) for

the maximum likelihood estimator scales as 1/
√
p(1− p)T .

With p = 1/2 for example, this gives a simple messaging
protocol with a probability of source detection vanishing at
a rate of 1/

√
T .

In what follows, we show that with an appropriate choice
of time-dependent randomness, we can achieve almost per-
fect source obfuscation without sacrificing the spreading rate.
The key insight is to add randomness such that all the in-
fected nodes are (almost) equally likely to have been the
origin of the infection (see Figure 2 and Equation (6)). This



can be achieved by adaptively choosing the spreading rate
such that the farther away the infection is from the source
the more likely it is to spread. We now apply this insight to
design precisely how fast the spread should be for each in-
fected node at any timestep. A node v is designed to infect
a neighbor at time t ∈ {1, 2, . . .} with probability

pv,t ,
δH(v, v∗) + 1

t+ 1
, (3)

where δH(v, v∗) is the hop distance between an infected node
v at the boundary of infection and the source v∗. The details
of this spreading model are summarized in Protocol 3 (Line
Protocol).

The next proposition shows that this protocol achieves the
two main goals of an anonymous messaging protocol: order-
optimal spreading rate and close-to-perfect obfuscation.

Proposition 2.1. Suppose that the underlying contact net-
work G is an infinite line, and one node v∗ in G starts to
spread a message according to Protocol 3 (Line Protocol) at
time t = 0. At a certain time T ≥ 0 an adversary estimates
the location of the source v∗ using the maximum likelihood
estimator v̂ML defined in Equation (1). The following prop-
erties hold for the Line Protocol:

(a) the expected number of infected nodes at time T is
E[NT ] = T + 1;

(b) the probability of source detection at time T is upper
bounded by

P(v̂ML = v∗) ≤ 2T + 1

(T + 1)2
; and (4)

(c) the expected hop-distance between the true source v∗

and its estimate v̂ML is lower bounded by

E[δH(v∗, v̂ML)] ≥ T 3

9(T + 1)2
. (5)

The proof of the above proposition can be found in Ap-
pendix B. Compared to the (fastest-spreading) determinis-
tic spreading model with a spreading rate of NT = 2T + 1,
The Line Protocol is slower by a factor of 2. This type of
constant-factor loss in the spreading rate is inevitable: the
only way to deviate from the deterministic spreading model
is to introduce appropriate delays. The probability of de-
tection is 2/E[NT ] + o(1/E[NT ]), which is almost perfect
obfuscation up to a factor of 2. Further, the expected dis-
tance of the true source from the ML source estimate scales
linearly with the size of the infection E[NT ], which is the
best separation one can hope to achieve.

To illustrate the power of the Line Protocol, we consider
a fixed T and a finite ring graph of size larger than 2T + 1,
and compare the protocol to a simple random diffusion. If
the source v∗ is chosen uniformly at random on the ring and
its message is spread according to the Line Protocol, then
the probability of the source being detected given a set of
infected nodes VT is

P
(
v∗ = k

∣∣VT ) =
1

|VT |
+O

( 1

|VT |2
)
, (6)

for all k ∈ VT and |VT | ≤ 2T + 1. This follows from the
exact computation of the posterior distribution, which can
be found at the end of Appendix B. For an example with

|VT | = 101, Figure 2 illustrates how the Line Protocol flat-
tens the posterior distribution compared to the random dif-
fusion model. When messages are sent according to the ran-
dom diffusion model, the source can only hide in the central
part, which has width O(

√
T ), leading to a probability of

source detection on the order of 1/
√
T [20].
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Figure 2: The Line Protocol has a close-to-uniform posterior
distribution P(v∗ = k |VT = {1, . . . , 101}).

On an infinite line, the Line Protocol provides maximum
protection, since the probability of detection scales as 1/E[NT ]
for any T . When the Line Protocol is applied to regular
trees with degree larger than two, the infected subgraph
contains exponentially many paths starting at v∗ of length
close to T . In such cases, the Jordan center (i.e., the node
with the smallest maximum distance to every other node in
the graph) matches the source with positive probability, as
shown in Figure 3 for different d-regular trees.

2.2 Spreading on a regular tree
Consider the case when the underlying contact network is

an infinite d-regular tree with d larger than two. Analogous
to the line network, the fastest spreading protocol infects
all the uninfected neighbors at each timestep. This spreads
fast, infecting NT = 1 + d((d − 1)T − 1)/(d − 2) nodes at
time T , but the source is trivially identified as the center
of the infected subtree. In this case, the infected subtree is
a balanced regular tree where all leaves are at equal depth
from the source.

Now consider a random diffusion model. At each timestep,
each uninfected neighbor of an infected node is indepen-
dently infected with probability p. In this case, E[NT ] =
1 + pd((d− 1)T − 1)/(d− 2), and it was shown in [20] that
the probability of correct detection for the maximum likeli-
hood estimator of the rumor source is P(v̂ML = v∗) ≥ Cd for
some positive constant Cd that only depends on the degree
d. Hence, the source is only hidden in a constant number
of nodes close to the center, even when the total number of
infected nodes is arbitrarily large.

We now present a protocol that spreads the message fast
(NT = O((d−1)T/2)) and hides the source within a constant
fraction of the infected nodes (P(v̂ML = v∗) = O(1/NT )).
This protocol keeps the infected subtree balanced: at any
time t, all the leaves of the infected subtree are at the same
hop distance from its center. Further, as we will see next, the
leaves of the infected subtree are equally likely to have been
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Figure 4: Spreading on a tree. The red node is the message
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will be the center of the infected subtree.

the source. Figure 4 illustrates how this protocol spreads a
message on a regular tree of degree 3. At t = 1, node 0 (the
message author) infects one of its neighbors (node 1 in this
example) uniformly at random. Node 1 will be referred to
as the virtual source at t = 1. The virtual source at time t is
the center of the infected subtree at time 2t. At t = 2, node 1
infects all its uninfected neighbors, making the infected sub-
graph G2 a balanced tree with node 1 at the center. Among
the uninfected neighbors of node 1, one node is chosen to be
the new virtual source (node 2 in the example). The mes-
sage then spreads to the uninfected neighbors of node 2 at
time t = 3, and then to their neighbors at time t = 4 making
G4 a balanced tree with node 2 at the center. Notice that
any given time t, all leaves are equally likely to have been
the source. This follows form the symmetric structure of Gt.
The distributed implementation of this spreading algorithm
is given in Protocol 4 (Tree Protocol).

The Tree Protocol ensures that the source can hide among
the leaf nodes of the infected subtree, i.e. all leaves are
equally likely to have been the source. Since a significant

fraction of the infected nodes are at the leaf, this protocol
achieves an almost perfect obfuscation.

Proposition 2.2. Suppose that the underlying contact net-
work G is an infinite d-regular tree with d > 2, and one node
v∗ in G starts to spread a message according to Protocol 4
(Tree Protocol) at time t = 0. At a certain time T ≥ 1
an adversary estimates the location of the source v∗ using
the maximum likelihood estimator v̂ML. Then the following
properties hold for the Tree Protocol:

(a) the number of infected nodes at time T ≥ 1 is at least

NT ≥
(d− 1)(T+1)/2

d− 2
; (7)

(b) the probability of source detection for the maximum
likelihood estimator at time T is

P
(
v̂ML = v∗

)
=

d− 1

2 + (d− 2)NT
; and (8)

(c) the expected hop-distance between the true source v∗

and its estimate v̂ is lower bounded by

E[δH(v∗, v̂ML)] ≥ T

2
. (9)

The proof of the above proposition can be found in Ap-
pendix C. Equation (7) shows that the spreading rate of the

Tree Protocol is O((d− 1)T/2), which is slower than the de-
terministic spreading model that infects O((d − 1)T ) nodes
at time T . This is inevitable, as we explained in relation to
the Line Protocol.

Although this protocol spreads fast and provides an al-
most perfect obfuscation on a tree with degree larger than
two, it fails when the contact network is a line. There are
only two leaves in a line, so at any given time T , the source
can be detected with probability 1/2, independent of the
size of the infected subgraph. Another drawback of this ap-
proach, is that even in the long run, not every node receives
the message. For instance, the neighbors of the source node
that are not chosen in the first step are never infected. In
the following section, we address these issues and propose a
new messaging protocol that combines the key ideas of both
spreading models presented in this section.

3. ADAPTIVE DIFFUSION
Section 2 showed that by changing the infection rate and

direction based on state variables, the source can hide from
the adversary. In particular, the messaging protocols pre-
sented in Sections 2.1 and 2.2 provide provable anonymity
guarantees for line graphs and d-regular trees with d > 2,
respectively. However, the Line Protocol fails to protect the
source on graphs with larger degree. Similarly, the Tree
Protocol fails to protect the source on a line and does not
pass the message to some of the nodes. To overcome these
challenges, we use ideas from the Line Protocol (nodes far-
ther away from the source spread message faster) and from
the Tree Protocol (keep the infected subgraph balanced and
keep the source closer to the leaves) to design a protocol that
achieves perfect obfuscation and spreads fast on all regular
trees, including lines. We call this protocol adaptive diffu-
sion to emphasize the fact that unlike diffusion, the protocol
adapts the infection rate and direction as a function of time.

We step through the intuition of the adaptive diffusion
spreading model with an example, partially illustrated in



Figure 5. Suppose that the underlying contact network is
an infinite d-regular tree. As illustrated in Figure 5, we
ensure that the infected subgraph Gt at any even timestep
t ∈ {2, 4, . . .} is a balanced tree of depth t/2, i.e. the hop dis-
tance from any leaf to the root (or the center of the graph) is
t/2. We call the root node of Gt the “virtual source” at time
t, and denote it by vt. We use v0 = v∗ to denote the true
source. To keep the regular structure at even timesteps, we
use the odd timesteps to transition from one regular subtree
Gt to another one Gt+2 with depth incremented by one.

Figure 5 illustrates two sample evolutions of infection, as
per adaptive diffusion. The source v∗ = 0 starts the infection
at t = 0. At time t = 1, node 0 infects node 1 and passes
the virtual source token to it, i.e. v2 = 1 (we only define
virtual sources for even timesteps). At time t = 1, node 1
infects its uninfected neighbors, nodes 2 and 3. Notice that
it requires two timesteps to infect nodes {1, 2, 3} in order to
spread infection to G2, which is a balanced tree of depth 1
rooted at node v2 = 1. At time t = 3, the adaptive diffusion
protocol has two choices, either to pass the virtual source
token to one of node 1’s neighbors that is not a previous
virtual source, for example node 2 (Figure 5 left), or to keep
the virtual source at node 1 (Figure 5 right). In the former
case, it again takes two timesteps to spread infection to G4,
which is a balanced tree of depth 2 rooted at node v4 = 2.
In the latter case, only one timestep is required, but we
add a unit time delay to be consistent with the previous
case. Hence, G3 = G4 which is a balanced tree of depth 2
rooted at node v4 = 1. This random infection process can be
defined as a time-inhomogeneous (time-dependent) Markov
chain over the state defined by the location of the current
virtual source {vt}t∈{0,2,4,...}.

By the symmetry of the underlying contact network (which
we assume is an infinite d-regular tree) and the fact that the
next virtual source is chosen uniformly at random among
the neighbors of the current virtual source, it is sufficient to
consider a Markov chain over the hop distance between the
true source v∗ and vt, the virtual source at time t. Therefore,
we design a Markov chain over the state

ht = δH(v∗, vt) ,

for even t. Figure 5 shows an example with (h2, h4) = (1, 2)
on the left and (h2, h4) = (1, 1) on the right.
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Figure 5: Adaptive diffusion over regular trees. Yellow nodes
indicate the set of virtual sources (past and present), and for
T = 4, the virtual source node is outlined in red.

At every even timestep, the protocol randomly determines
whether to keep the virtual source token (ht+2 = ht) or to
pass it (ht+2 = ht + 1). Using ideas from Section 2.1, we
will construct an time-inhomogeneous Markov chain over
{ht}t∈{2,4,6,...} by choosing appropriate transition probabil-
ities as a function of time t and current state ht. For an
even t, we denote this probability by

αd(t, h) , P
(
ht+2 = ht|ht = h

)
, (10)

where the subscript d denotes the degree of the underlying
contact network. For the running example, at t = 2, the vir-
tual source remains at the current node (right) with prob-
ability α3(2, 1), or passes the virtual source to a neighbor
with probability 1−α3(2, 1) (left). The parameters αd(t, h)
fully describe the transition probability of the Markov chain

defined over ht ∈ {1, 2, . . . , t/2}. Let p(t) = [p
(t)
h ]h∈{1,...,t/2}

denote the distribution of the state of the Markov chain at
time t, i.e. p

(t)
h = P(ht = h). The state transition can be

represented as the following ((t/2) + 1)× (t/2) dimensional
column stochastic matrices:

p(t+2) =



αd(t, 1)
1− αd(t, 1) αd(t, 2)

1− αd(t, 2)
. . .

. . . αd(t, t/2)
1− αd(t, t/2)

 p
(t) .

We treat ht as strictly positive, because at time t = 0, when
h0 = 0, the virtual source is always passed. Thus, ht ≥ 1
afterwards. We design the the parameters αd(t, h) to achieve

perfect hiding. Precisely, at all even t, we desire p(t) to be

p(t) =
d− 2

(d− 1)t/2 − 1


1

(d− 1)
...

(d− 1)t/2−1

 ∈ Rt/2 , (11)

for d > 2 and for d = 2, p(t) = (2/t)1t/2 where 1t/2 is all

ones vector in Rt/2. There are d(d−1)h−1 nodes at distance
h from the virtual source, and by symmetry all of them are
equally likely to have been the source:

P(GT |v∗, δH(v∗, vt) = h) =
1

d(d− 1)h−1
p
(t)
h

=
d− 2

d((d− 1)t/2 − 1)
,

for d > 2, which is independent of h. Hence, all the infected
nodes (except for the virtual source) are equally likely to
have been the source of the origin. This statement is made
precise in Equation (14).

Together with the desired probability distribution in Equa-
tion (11), this gives a recursion over t and h for computing
the appropriate αd(t, h)’s. After some algebra and an initial

state p(2) = 1, we get that the following choice ensures the
desired Equation (11):

αd(t, h) =

{
(d−1)t/2−h+1−1

(d−1)t/2+1−1
if d > 2

t−2h+2
t+2

if d = 2
(12)

With this choice of parameters, we show that adaptive dif-
fusion spreads fast, infecting Nt = O((d − 1)t/2) nodes at
time t and each of the nodes except for the virtual source is
equally likely to have been the source.



Theorem 3.1. Suppose the contact network is a d-regular
tree with d ≥ 2, and one node v∗ in G starts to spread a mes-
sage according to Protocol 1 at time t = 0. At a certain time
T ≥ 0 an adversary estimates the location of the source v∗

using the maximum likelihood estimator v̂ML. The following
properties hold for Protocol 1:

(a) the number of infected nodes at time T is

NT ≥

{
2(d−1)(T+1)/2−d

(d−2)
+ 1 if d > 2

T + 1 if d = 2
(13)

(b) the probability of source detection for the maximum
likelihood estimator at time T is

P (v̂ML = v∗) ≤
{ d−2

2(d−1)(T+1)/2−d if d > 2

(1/T ) if d = 2
(14)

(c) the expected hop-distance between the true source v∗

and its estimate v̂ML under maximum likelihood esti-
mation is lower bounded by

E[d(v̂ML, v
∗)] ≥ d− 1

d

T

2
. (15)

Protocol 1 describes the details of the implementation of
adaptive diffusion. The first three steps are always the same.
At time t = 1, the rumor source v∗ selects, uniformly at
random, one of its neighbors to be the virtual source v2
and passes the message to it. Next at t = 2, the new virtual
source v2 infects all its uninfected neighbors forming G2 (see
Figure 5). Then node v2 chooses to either keep the virtual
source token with probability αd(2, 1) or to pass it along.

If v2 chooses to remain the virtual source i.e., v4 = v2,
it passes ‘infection messages’ to all the leaf nodes in the
infected subtree, telling each leaf to infect all its uninfected
neighbors. Since the virtual source is not connected to the
leaf nodes in the infected subtree, these infection messages
get relayed by the interior nodes of the subtree. This leads to
Nt messages getting passed in total (we assume this happens
instantaneously). These messages cause the rumor to spread
symmetrically in all directions at t = 3. At t = 4, no more
spreading occurs.

If v2 does not choose to remain the virtual source, it passes
the virtual source token to a randomly chosen neighbor v4,
excluding the previous virtual source (in this example, v0).
Thus, if the virtual source moves, it moves away from the
true source by one hop. Once v4 receives the virtual source
token, it sends out infection messages. However, these mes-
sages do not get passed back in the direction of the previous
virtual source. This causes the infection to spread asym-
metrically over only one subtree of the infected graph (G3

in left panel of Figure 5). In the subsequent timestep (t = 4),
the virtual source remains fixed and passes the same infec-
tion messages again. After this second round of asymmetric
spreading, the infected graph is once again symmetric about
the virtual source v4 (G4 in left panel of Figure 5).

Although adaptive diffusion obfuscates the source on infi-
nite regular trees, real world contact networks have cycles,
and degrees are irregular, and the size is finite. We study
how adaptive diffusion works under more realistic contact
networks.

Protocol 1 Adaptive Diffusion

Require: contact network G = (V,E), source v∗, time T ,
degree d

Ensure: set of infected nodes VT
1: V0 ← {v∗}, h← 0, v0 ← v∗

2: v∗ selects one of its neighbors u at random
3: V1 ← V0 ∪ {u}, h← 1, v1 ← u
4: let N(u) represent u’s neighbors
5: V2 ← V1 ∪N(u) \ {v∗}, v2 ← v1
6: t← 3
7: for t ≤ T do
8: vt−1 selects a random variable X ∼ U(0, 1)
9: if X ≤ αd(t− 1, h) then

10: for all v ∈ N(vt−1) do
11: Infection Message(G,vt−1,v,Gt)

12: else
13: vt−1 randomly selects u ∈ N(vt−1) \ {vt−2}
14: h← h+ 1
15: vt ← u
16: for all v ∈ N(vt) \ {vt−1} do
17: Infection Message(G,vt,v,Vt)
18: if t+ 1 > T then
19: break
20: Infection Message(G,vt,v,Vt)

21: t← t+ 2

22: procedure Infection Message(G,u,v,Vt)
23: if v ∈ Vt then
24: for all w ∈ N(v) \ {u} do
25: Infection Message(G,v,w,Gt)

26: else
27: Vt ← Vt−2 ∪ {v}

4. GENERAL CONTACT NETWORKS
We study adaptive diffusion on general networks when the

underlying graph is cyclic, irregular, and finite.

4.1 Irregular tree networks
We first consider tree networks with potentially different

degrees at the vertices. Although the degrees are irregu-
lar, we still apply adaptive diffusion with αd0(t, h)’s chosen
for a specific d0 that might be mismatched with the graph
due to degree irregularities. There are a few challenges in
this degree-mismatched adaptive diffusion. First, finding
the maximum likelihood estimate of the source is not im-
mediate, due to degree irregularities. Second, it is not clear
a priori which choice of d0 is good. We first show an ef-
ficient message-passing algorithm for computing the max-
imum likelihood source estimate. Using this estimate, we
illustrate through simulations how adaptive diffusion per-
forms and show that the detection probability is not too
sensitive to the choice of d0 as long as d0 is above a thresh-
old that depends on the degree distribution.

Efficient ML estimation. To keep the discussion sim-
ple, we assume that T is even. The same approach can be
naturally extended to odd T . Since the spreading pattern
in adaptive diffusion is entirely deterministic given the se-
quence of virtual sources at each timestep, computing the
likelihood P(GT |v∗ = v) is equivalent to computing the
probability of the virtual source moving from v to vT over
T timesteps. On trees, there is only one path from v to
vT and since we do not allow the virtual source to “back-



track”, we only need to compute the probability of every
virtual source sequence (v0, v2, . . . , vT ) that meets the con-
straint v0 = v. Due to the Markov property exhibited by
adaptive diffusion, we have P(GT |{(vt, ht)}t∈{2,4,...,T}) =∏
t<T−1
t even

P(vt+2|vt, ht), where ht = δH(v0, vt). For t even,

P(vt+2|vt, ht) = αd(t, ht) if vt = vt+2 and 1−αd(t,ht)
deg(vt)−1

oth-

erwise. Here deg(vt) denotes the degree of node vt in G.
Given a virtual source trajectory P = (v0, v2, . . . , vT ), let
JP = (j1, . . . , jδH (v0,vT )) denote the timesteps at which a
new virtual source is introduced, with 1 ≤ ji ≤ T . It al-
ways holds that j1 = 2 because after t = 0, the true source
chooses a new virtual source and v2 6= v0. If the virtual
source at t = 2 were to keep the token exactly once after
receiving it (so v2 = v4), then j2 = 6, and so forth. To find
the likelihood of a node being the true source, we sum over
all such trajectories

P(GT |v0) =
∑

JP :P∈S(v0,vT ,T )

1

deg(v0)

δH (v0,vT )−1∏
k=1

1

deg(vjk )− 1︸ ︷︷ ︸
Av0

×

∏
t<T
t even

(
1{t+2/∈JP}αd(t, ht) + 1{t+2∈JP}(1− αd(t, ht))

)
,

︸ ︷︷ ︸
Bv0

(16)

where 1 is the indicator function and S(v0, vT , T ) = {P :
P = (v0, v2, . . . , vT ) is a valid trajectory of the virtual source}.
Intuitively, part Av0 of the above expression is the proba-
bility of choosing the set of virtual sources specified by P,
and part Bv0 is the probability of keeping or passing the
virtual source token at the specified timesteps. Equation
(16) holds for both regular and irregular trees. Since the
path between two nodes in a tree is unique, and part Av0 is
(approximately) the product of node degrees in that path,
Av0 is identical for all trajectories P. Pulling Av0 out of
the summation, we wish to compute the summation over all
valid paths P of part Bv0 (for ease of exposition, we will use
Bv0 to refer to this whole summation). Although there are
combinatorially many valid paths, we can simplify the for-
mula in Equation (16) for the particular choice of αd(t, h)’s
defined in (12).

Proposition 4.1. Suppose that the underlying contact net-
work G̃ is an infinite tree with degree of each node larger than
one. One node ṽ∗ in G̃ starts to spread a message at time
t = 0 according to Protocol 1 with the choice of d = d0. At
a certain even time T ≥ 0, the maximum likelihood estimate
of ṽ∗ given a snapshot of the infected subtree G̃T is

arg max
v∈G̃T \ṽT

d0
deg(v)

∏
v′∈p(ṽT ,v)\{ṽT ,v}

d0 − 1

deg(v′)− 1
,(17)

where ṽT is the (Jordan) center of the infected subtree G̃T ,
p(ṽT , v) is the unique path from ṽT to v, and deg(v′) is the
degree of node v′.

To understand this proposition, consider Figure 6, which
was spread using adaptive diffusion (Protocol 1) with a choice
of d0 = 2. Then Equation (17) can be computed easily
for each node, giving [1/2, 1, 0, 1, 2/3, 1/2, 1/2, 1/4] for nodes
[1, 2, 3, 4, 5, 6, 7, 8], respectively. Hence, nodes 2 and 4 are

most likely. Intuitively, nodes whose path to the center
have small degrees are more likely. However, if we repeat
this estimation assuming d0 = 4, then Equation (17) gives
[3, 2, 0, 2, 4/3, 3, 3, 3/2]. In this case, nodes 1, 6, and 7 are
most likely. When d0 is large, adaptive diffusion tends to
place the source closer to the leaves of the infected subtree,
so leaf nodes are more likely to have been the source.

21 3

4

5

6

7

8

4v

Figure 6: Irregular tree G̃4 with virtual source ṽ4.

Proof of Proposition 4.1. We first make two observa-
tions: (a) Over regular trees, P(GT |u) = P(GT |w) for any
u 6= w ∈ GT , even if they are different distances from the
virtual souce. (b) Part Bv0 is identical for regular and ir-
regular graphs, as long as the distance from the candidate
source node to vT is the same in both, and the same d0 is
used to compute αd0(t, h). That is, let G̃T denote an in-
fected subtree over an irregular tree network, with virtual
source ṽT , and GT will denote a regular infected subtree
with virtual source vT . For candidate sources ṽ0 ∈ G̃T and
v0 ∈ GT , if δH(ṽT , ṽ0) = δH(vT , v0) = h, then Bv0 = Bṽ0 .

So to find the likelihood of ṽ0 ∈ G̃T , we can solve for Bṽ0
using the likelihood of v0 ∈ GT , and compute Aṽ0 using the
degree information of every node in the infected, irregular
subgraph.

To solve for Bṽ0 , note that over regular graphs, Av =
1/(d0 (d0−1)δH (v,vT )−1), where d0 is the degree of the regu-
lar graph. If G is a regular tree, Equation (16) still applies.
Critically, for regular trees, the αd0(t, h)’s are designed such
that the likelihood of each node being the true source is
equal. Hence,

P(GT |v0) =
1

d0(d0 − 1)δH (v0,vT )−1︸ ︷︷ ︸
Av0

×Bv0 , (18)

is a constant that does not depend on v0. This gives Bv0 ∝
(d0−1)δH (vT ,v0). From observation (b), we have that Bṽ0 =

Bv0 . Thus we get that for a ṽ0 ∈ G̃T \ {ṽT },

P(G̃T |ṽ0) = Aṽ0 Bṽ0

∝ (d0 − 1)δH (ṽT ,ṽ0)

deg(ṽ0)
∏
ṽ′∈p(ṽT ,ṽ0)\{ṽ0,ṽT }

(deg(ṽ′)− 1)

After scaling appropriately and noting that |p(ṽT , ṽ0)| =
δH(ṽT , ṽ0) + 1, this gives the formula in Equation (17).

Implementation and numerical simulations. We pro-
vide an efficient message passing algorithm for computing
the ML estimate in Equation (17), which is naturally dis-
tributed. We then use this estimator to simulate message
spreading for random irregular trees and show that when d0
exceeds a threshold (determined by the degree distribution),
obfuscation is not too sensitive to the choice of d0.
Aṽ0 can be computed efficiently for irregular graphs with

a simple message-passing algorithm. In this algorithm, each



Algorithm 2 ML estimator of (17)

Input: infected network G̃T = (ṼT , ẼT ), virtual source ṽT ,
time T , the spreading model parameter d0

Output: argmaxṽ∈ṼT
P(G̃T |ṽ∗ = ṽ)

1: Pṽ , P(G̃T |ṽ∗ = ṽ).
2: PṽT ← 0

3: Aṽ ← 1 for ṽ ∈ ṼT \ {ṽT }
4: AṽT ← 0
5: A← Degree Message(GT , ṽT , ṽT , A)
6: P(GT |vleaf )← 1

d0(d0−1)T/2−1

∏
t<T
t even

(1− αd0(t, t
2
))}

7: for all ṽ ∈ ṼT \ {ṽT } do
8: h← δH(ṽ, ṽT )
9: Bṽ ← P(GT |vleaf ) · d0 · (d0 − 1)h−1

10: Pṽ ← Aṽ ·Bṽ
return argmaxṽ∈ṼT

Pṽ

11: procedure Degree Message(G̃T , ũ, ṽ, A)
12: for all w̃ ∈ N(ṽ) \ {ũ} do
13: if ṽ = ũ then
14: Aw̃ ← Aṽ/deg(w̃)

15: Degree Message(G̃T , ṽ, w̃, A)
16: else
17: if ṽ is not a leaf then
18: Aw̃ ← Aṽ · deg(ṽ)/(deg(w̃) · (deg(ṽ)− 1))

19: Degree Message(G̃T , ṽ, w̃, A)
return A

node ṽ multiplies its degree information by a cumulative
likelihood that gets passed from the virtual source to the
leaves. Thus if there are ÑT infected nodes in G̃T , then Aṽ0
for every ṽ0 ∈ G̃T can be computed by passing O(ÑT ) mes-
sages. This message-passing is outlined in procedure ‘Degree
Message’ of Algorithm 2. For example, consider computing
A5 for the graph in Figure 6. The virtual source ṽT = 3
starts by setting A2 = 1

2
, A4 = 1

2
, and A5 = 1

3
. This gives

A5, but to compute other other values of Aw̃, the message
passing continues. Each of the nodes ṽ ∈ N(3) in turn sets
Aw̃ for their children w̃ ∈ N(ṽ); this is done by dividing
Aṽ by deg(w̃) and replacing the factor of 1

deg(ṽ)
in Aṽ with

1
deg(ṽ−1)

. For example, node 5 would set A7 = A5
2
· 3

2
.This

step is applied recursively until reaching the leaves.
As discussed earlier, Bṽ0 only depends on d0 and δH(ṽT , ṽ0).

If vleaf ∈ GT is a leaf node and G is a regular tree, we get

P(GT |vleaf) =
1

d0(d0 − 1)T/2−1︸ ︷︷ ︸
Avleaf

∏
t<T
t even

(1− αd0(t,
t

2
))

︸ ︷︷ ︸
Bvleaf

. (19)

If ṽ0 is h < T/2 hops from ṽT , then for node v0 with
δH(v0, vT ) = h < T/2 over a regular tree,

P(GT |v0) = P(GT |vleaf) =
1

d0 · (d0 − 1)h−1
Bv0 .

Finally, Bṽ0 = Bv0 . So to solve for B5 in our example, we
compute P(GT |vleaf ) for a 3-regular graph at time T = 4.
This gives P(G4|vleaf ) = Avleaf ·Bvleaf = 1

6
·(1−α3(2, 1)) =

1
9
. Thus B5 = P(G4|vleaf ) ·d0 · (d0−1)h−1 = P(G4|vleaf ) ·3 ·

(2)0 = 1
3
. This gives P(G̃4|5) = A5 · B5 = 1

9
. The same can

be done for other nodes in the graph to find the maximum
likelihood source estimate.
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Figure 7: The probability of detection by the maximum like-
lihood estimator depends on the assumed degree d0; the
source cannot hide well below a threshold value of d0.

We tested adaptive diffusion over random trees; each node’s
degree was drawn i.i.d. from a fixed distribution. Figure 7
illustrates simulation results for random trees in which each
node has degree 3 or 4 with equal probability, averaged over
100,000 trials. By the law of large numbers, the number of
nodes infected scales as NT = eTE[log(D−1)] ∼ 2.45T , where
D represents the degree distribution of the underlying ran-
dom irregular tree. The value of d0 corresponds to a regular
tree with size scaling as (d0 − 1)T . Hence, one can expect
that for d0−1 < 2.45, the source is likely to be in the center
of the infection, and for d0 > 2.45 the source is likely to
be at the boundary of the infection. Since the number of
nodes in the boundary is significantly larger than the num-
ber of nodes in the center, the detection probability is lower
for d0 − 1 > 2.45. This is illustrated in the figure, which
matches our prediction. In general, d0 = 1 + deE[log(D−1)]e
provides the best obfuscation, and it is robust for any value
above that. In this plot, data points represent successive
even timesteps; their uniform spacing implies the message is
spreading exponentially quickly.

Figure 8 illustrates the probability of detection as a func-
tion of infection size while varying the degree distribution
of the underlying tree. The notation (3, 5) => (0.5, 0.5)
in the legend indicates that each node in the tree has de-
gree 3 or 5, each with probability 0.5. For each distribution
tested, we chose d0 to be the maximum degree of each de-
gree distribution. The average size of infection scales as
NT = eTE[log(D−1)] as expected, whereas the probability of
detection scales as (dmin − 1)−T = 2−T , which is indepen-
dent of the degree distribution. This suggests that adaptive
diffusion fails to provide near-perfect obfuscation when the
underlying graph is irregular, and the gap increases with the
irregularity of the graph.

4.2 Real World Networks
To understand how adaptive diffusion fares in realistic

scenarios that involve cycles, irregular degrees, and finite
graph size, we ran the adaptive diffusion protocol over an
underlying connectivity network of 10,000 Facebook users
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Figure 8: Adaptive diffusion no longer provides perfect ob-
fuscation for highly irregular graphs.

in New Orleans circa 2009, as described by the Facebook
WOSN dataset [22]. We eliminated all nodes with fewer
than three friends (this approach is taken by several existing
anonymous applications so users cannot guess which of their
friends originated the message), which left us with a network
of 9,502 users. Over this underlying network, we selected a
node uniformly at random as the rumor source, and spread
the message using adaptive diffusion setting with d0 = ∞,
which means that the virtual source is always passed to a
new node. This choice is to make the ML source estima-
tion faster, and other choices of d0 could outperform this
naive choice. To preserve the symmetry of our constructed
trees as much as possible, we constrained each infected node
to infect a maximum of three other nodes in each timestep.
We also give the adversary access to the undirected infection
subtree that explicitly identifies all pairs of nodes for which
one node spread the infection to the other. This subtree
is overlaid on the underlying contact network, which is not
necessarily tree-structured. We demonstrate in simulation
(Figure 9) that even with this strong side information, the
adversary can only identify the true message source with low
probability.

Using the naive method of enumerating every possible
message trajectory, it is computationally expensive to find
the exact ML source estimate since there are 2T possible tra-
jectories, depending on whether the virtual source stayed or
moved at each timestep. If the true source is one of the
leaves, we can closely approximate the ML estimate among
all leaf nodes, using the same procedure as described in 4.1,
with one small modification: in graphs with cycles, the term
(deg(vjk )−1) from equation (16) should be substituted with
(degu(vjk )−1), where degu(vjk ) denotes the number of unin-
fected neighbors of vjk at time jk. Loops in the graph cause
this value to be time-varying, and also dependent on the lo-
cation of v0, the candidate source. We did not approximate
the ML estimate for non-leaves because the simplifications
used in Section 4.1 to compute the likelihood no longer hold,
leading to an exponential increase in the problem dimension.
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Figure 9: Near-ML probability of detection for the Facebook
graph with adaptive diffusion.
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Figure 10: Hop distance between true source and estimated
source over infection subtree for adaptive diffusion over the
Facebook graph.

This approach is only an approximation of the ML esti-
mate because the virtual source could move in a loop over
the social graph (i.e., the same node could be the virtual
source more than once, in nonadjacent timesteps).

On average, adaptive diffusion reached 96 percent of the
network within 10 timesteps using d0 = 4. We also com-
puted the average distance of the true source from the es-
timated source over the infected subtree (Figure 10). We
see that as time progresses, so does the hop distance of the
estimated source from the true source. In social networks,
nearly everyone is within a small number of hops (say, 6
hops [21]) from everyone else, so this computation is not
as informative in this setting. However, it is relevant in
location-based connectivity graphs, which can induce large
hop distances between nodes.



5. DISCUSSION
Besides the adversarial model studied in this paper, anony-

mous messaging applications face challenges under alterna-
tive adversarial models that can occur in practice. Examples
include (a) an adversary that corrupts a subset of network
nodes through malware, bribery, or Sybil node creation in
order to access metadata like message timing and sender
identity; (b) an adversary that prevents nodes from follow-
ing the messaging protocol (e.g., via malware); or (c) an ad-
versarial network provider that monitor all network activity
and analyzes this activity retroactively.

All these adversarial attacks increase the chance of source
identification, which is a challenging problem for designing
anonymous protocols. To a large extent, de-anonymization
is an arms race in which there is always side information
for an adversary to exploit. The point is to make that ex-
ploitation as expensive and difficult as possible, thereby pre-
venting it from scaling. Within this arms race, anonymous
spreading protocols ensure that adversaries cannot use mes-
sage propagation patterns as a weapon.
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APPENDIX
A. LINE AND TREE PROTOCOLS

A.1 Line Protocol
Let the underlying contact network be an infinite line with

V = {...,−1, 0, 1, 2, ...} and E = {(i, i+ 1) : i ∈ Z}. At time
t, an infected node v at the boundary spreads the infection to
its uninfected neighbor with probability pv,t given in Equa-
tion (3). ‘Infection’ means transmitting the message, the
hop-distance of the node (incremented by one), and the cur-
rent timestep since the start of the outbreak (incremented
by one). Note that this protocol is naturally distributed.

A.2 Tree Protocol
At time t = 0, the source node v∗ is initialized with

s1,v∗ = 1 and s2,v∗ = 0. At time t = 1, v∗ selects, uni-
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Protocol 3 Spreading on a line

Require contact network G = (V,E), source v∗, time T
Ensure: infected subgraph GT = (VT , ET )
1: V0 ← {v∗}
2: δH(v∗ − 1, v∗)← 1 and δH(v∗ + 1, v∗)← 1
3: t← 1
4: for t ≤ T do
5: v ← rightmost node in Vt
6: draw a random variable X ∼ U(0, 1)
7: if X ≤ (δH(v, v∗) + 1)/(t+ 1) then
8: Vt ← Vt−1 ∪ {v + 1}
9: δH(v + 1, v∗)← δH(v, v∗) + 1

10: v ← leftmost node in Vt
11: draw a random variable Y ∼ U(0, 1)
12: if Y ≤ (δH(v, v∗) + 1)/(t+ 1) then
13: Vt ← Vt−1 ∪ {v − 1}
14: δH(v − 1, v∗)← δH(v, v∗) + 1

15: t← t+ 1

Protocol 4 Spreading on a tree

Require contact network G = (V,E), source v∗, time T
Ensure: infected subgraph GT = (VT , ET )
1: V0 ← {v∗}
2: s1,v∗ ← 0 and s2,v∗ ← 0
3: v∗ selects one of its neighbors u at random
4: V1 ← V0 ∪ {u}
5: s1,u ← 1 and s2,u ← 1
6: t← 2
7: for t ≤ T do
8: for all v ∈ Vt−1 with s2,v > 0 do
9: if s1,v = 1 then

10: v selects one of its uninfected neighbors u at
random

11: Vt ← Vt−1 ∪ {u}
12: s1,u ← 1 and s2,u ← s2,v + 1
13: s1,v ← 0
14: else
15: for all uninfected neighboring nodes w of v

do
16: Vt ← Vt−1 ∪ {w}
17: s1,w ← 0 and s2,w ← s2,v − 1
18: s2,v ← 0

19: t← t+ 1

formly at random, one of its neighboring nodes (say node u)
and passes the updated state variables s1,u = 1 and s2,u = 1
along with the message to u. The first state s1,u = 1 indi-
cates that node u is one of the ‘virtual sources’. The second
state s2,u = 1 indicates that node u will eventually be at
height 1 in the infected subtree. Afterwards, the protocol
iterates the following procedures. Any infected node v that
is not a future virtual source creates ‘offsprings’ that are not
virtual sources (s1,v′ = 0) and have heights decreased by one
(s1,v′ = s1,v−1). Any node v with height zero (i.e., s2,v = 0)
stops spreading the infection in order to ensure that v and
the true source are at the same depth from the center of Gt
for any t. An infected node v that is a future virtual source
proceeds similarly, with one difference: it chooses one of its
neighbors to be a virtual source with the second state incre-
mented by one, i.e. s2,v′ = s2,v + 1. Protocol 4 summarizes

this process and Figure 4 illustrates that if the contact net-
work is a regular tree, this process keeps the infected subtree
balanced and regular, with the true source hiding among the
leaves.

Figure 4 shows an example of this spreading algorithm.
At time t = 0, node v∗ = 0 starts spreading a rumor in the
network. At t = 1, node 0 infects node 1 and sets s1,1 = 1
and s2,1 = 1. At t = 2, node 1 infects node 3 and sets
s1,3 = 0 and s2,3 = 0. Node 1 also infects node 2 and sets
s1,2 = 1 and s2,2 = 2. At t = 3, node 2 infects node 4 and
sets s1,4 = 0 and s2,4 = 1. Node 2 also infects node 5 and
sets s1,5 = 1 and s2,5 = 3. Observe that node 3 will not
infect any of its neighbors because s1,3 = 0 and s2,3 = 0.

by sending a state information along with the message.
Each infected node u keeps two state variables: a binary
variable s1,u ∈ {0, 1} and a non-negative integer s2,u ∈
{0, 1, 2, . . . , t}. The binary state s1,u marks the future vir-
tual sources of the infected subtree; if s1,u = 1, then node u
will be the Jordan center of the graph at some point in the
future. The integer state s2,u keeps track of the eventual
‘height’ of node u in the infected subtree. In the example
above, node 3 will always be at the leaf, so it has s2,3 = 0,
where as node 9 is currently a leaf, but eventually will be
at height 2 and has s2,9 = 2, since node 5 will be at some
point a center of infected subtree of depth 3. These state
variables are computed for each node when it is infected,
and is constant over time.

B. PROOF OF PROPOSITION 2.1
Spreading rate. Consider the following time-dependent

random walk on N0 = {0, 1, . . .}. Let xt be the position of a
black dot at time t and assume that x0 = 0. At time t ≥ 1,
the dot can either move to the right: xt = xt−1 + 1 with
probability p(t, xt−1) = (xt−1 + 1)/(t+ 1); or stay where it
is: xt = xt−1 with probability q(t, xt−1) = 1 − p(t, xt−1).
We claim that P (xT = k) = 1/(T + 1), for k ∈ {0, . . . , T}.
We will prove this by induction on T . Observe that for
T = 1, x1 = x0 + 1 = 1 with probability 1/2 and x1 = 0
with probability 1/2. Therefore, the claim is true for T = 1.
Assume it is true for T − 1. At t = T ,

P (xT = 0) = P (xT−1 = 0)

(
1− 1

T + 1

)
=

1

T + 1

P (xT = T ) = P (xT−1 = T )
T

T + 1
=

1

T + 1

P (xT = k) = P (xT−1 = k − 1)
k

T + 1
+

P (xT−1 = k)

(
1− k + 1

T + 1

)
=

1

T + 1
,

for k ∈ {1, . . . , T − 1}. Thus, the claim is true for any T .
Given v∗ and T , consider an infected subgraph GT gener-

ated by Protocol 3 (Line Protocol). GT can be decomposed
into two independent chains: the chain to the right of v∗ rep-
resented by GrT and the chain to the left of v∗ represented by
GlT . Therefore, we can write GT = GrT ∪GlT ∪ {v∗}, where
|GrT |, |GlT | ∈ {0, . . . , T}. The Line Protocol spreads on each
side of v∗ according to the time-inhomogeneous random walk
described above. Hence, |GrT | and |GlT | are independent
and identically distributed, and P (|GrT | = k) = 1/(T + 1)
for any k ∈ {0, . . . , T}. The number of infected nodes
NT = |GT | = |GrT | + |GlT | + 1 is the sum of two indepen-
dent and uniformly distributed random variables. Thus, it



is distributed according to the triangular distribution:

P (NT = k) =
1

(T + 1)2

{
k, k ≤ T + 1,

2(T + 1)− k, k ≤ 2T + 1,

(20)
Probability of detection. Assume that the adversary

observes an infected subgraph GT of size NT = |GT | = k.
Moreover, assume that the adversary knows T . Not knowing
T will only lead to worse performance. If k ≤ T +1, then for
any v ∈ GT assumed to be the rumor source, we have that
|GrT | = kr, |GlT | = k−kr−1 with kr ∈ {0, 1, . . . , T}. There-
fore, P(GT |v) = P({|GrT | = kr} ∩

{
|GlT | = k − kr − 1

}
) =

1/(T + 1)2. This means that all v ∈ GT are equally likely
and the maximum likelihood algorithm would select one
node v ∈ GT at random. Hence, the probability of de-
tecting the true source P(v̂ML = v∗|GT , v∗) = 1/(T + 1)
whenever k ≤ T + 1. If k > T + 1, then for some nodes
v ∈ GT , we have that |GrT | = kr, |GlT | = k − kr − 1
with kr > T or |GrT | = k − kr, |GlT | = kl with kl > T .
These nodes could not have generated GT in T timesteps
and therefore P(GT |v) = 0 for all such nodes. The reader
can verify that there are 2k− 2T many such nodes. For the
other nodes, one can easily verify (similar to above) that
P(GT |v) = 1/(T + 1)2. Therefore, the probability of detect-
ing the true source P(v̂ML = v∗|GT , v∗) = 1/(2T − k + 1)
whenever k > T + 1. Putting it all together, we get that

P(v̂ML = v∗) =
∑
GT

P(v̂ML = v∗|GT )P(GT |v∗)

=

T∑
k=0

1

k + 1

k + 1

(T + 1)2

+

2T∑
T+1

1

2T − k + 1

2T − k + 1

(T + 1)2

=
2T + 1

(T + 1)2
. (21)

Finally, observe that P(v̂ML = v∗) is not a function of v∗.
We can use the above analysis to compute the exact pos-

terior distribution of the Line Protocol when the underly-
ing contact network is a finite ring. To put a prior on the
source location, we fix the observation time T and consider
a finite ring of size larger than 2T + 1. Assuming uniform
prior for the source location on this finite ring, the next re-
mark provides the posterior distribution of the source, given
that we observe infected nodes {1, . . . ,m} for some integer
m ≤ 2T + 1.

Remark B.1. Let the infected nodes be {1, 2, . . . ,m}, then

P(v∗ = k|GT ) =
1

Zm

∞∑
t=max{m−k,k−1}

1

(t+ 1)2

(
m+ 1

(t+ 2)

− k(m− k + 1)

(t+ 2)2

)
, (22)

for all k ∈ [m] where Zm is the normalizing constant to
ensure the probabilities sum to one.

Proof of Remark B.1. Denote the m infected nodes
by {1, . . . ,m}, and let G∗ denote the infected subgraph.

Then, for k ≤ (1 +m)/2,

P(there exists a time T such that GT = G∗|v∗ = k) (23)

=

∞∑
t=m−k

P(Gt = G∗ and Gt+1 6= G∗|v∗ = k) (24)

=

∞∑
t=m−k

1

(1 + t)2

(
1−

( t+ 2− k
t+ 2

)( t+ 2− (m− k + 1)

t+ 2

))
,

(25)

where the last line follows from Equation (20), where P(|GlT | =
k − 1) = 1/(T + 1), P(|GrT | = m − k) = 1/(T + 1), and
P(no infection at time t+ 1|Gt = G∗ and v∗ = k) = ((t +
2−k)(t+1+k−m)/(t+2)2). For k ≥ (1+m)/2, we have a
similar formula with summation starting from k − 1. With
the uniform prior on the finite ring, this proves Equation
(22).

C. PROOF OF PROPOSITION 2.2
First, under Protocol 4 (Tree Protocol), GT is a complete

(d − 1)-ary tree (with the exception that the root has d
children) of depth T/2 whenever T is even. GT is made up
of two complete (d − 1)-ary trees of depth (T − 1)/2 each
with their roots connected by an edge whenever T is odd.
Therefore, it follows that NT is a deterministic function of
T and is given by

NT =


1, T = 0,

2(d−1)(T+1)/2

d−2
− 2

d−2
, T ≥ 1, T odd ,

d(d−1)T/2

d−2
− 2

d−2
, T ≥ 2, T even ;

(26)

The lower bound on NT in Equation (7) follows immediately
from the above expression.

For any given infected graph GT , it can be verified that
any non-leaf node could not have generated GT under the
Tree Protocol. In other words, P(GT |v non-leaf node) = 0
and v could not have started the rumor. On the other hand,
we claim that for any two leaf nodes v1, v2 ∈ GT , we have
that P(GT |v1) = P(GT |v2) > 0. This is true because for
each leaf node v ∈ GT , there exists a sequence of state val-
ues {s1,u, s2,u}u∈GT

that evolves according to the Tree Pro-
tocol with s1,v = 1 and s2,v = 0. Further, the regularity of
the underlying graph G ensures that all these sequences are
equally likely. Therefore, the probability of correct rumor
source detection under the maximum likelihood algorithm
is given by PML(T ) = 1/Nl,T , where Nl,T represents the
number of leaf nodes in GT . It can be also shown that Nl,T
and NT are related to each other by the following expression

Nl,T =
(d− 2)NT + 2

d− 1
. (27)

This proves expression for P
(
v̂ML = v∗

)
given in (8).

Expected distance. For any v∗ ∈ G and any T , E[δH(v∗, v̂ML)]
is given by

E[δH(v∗, v̂ML)] =
∑
v∈G

∑
GT

P(GT |v∗)P(v̂ML = v)δH(v∗, v).

(28)
As indicated above, no matter where the rumor starts from,
GT is a (d − 1)-ary tree (with the exception that the root
has d children) of depth T/2 whenever T is even. More-
over, v̂ML = v with probability 1/Nl,T for all v leaf nodes
in GT . Therefore, the above equation can be solved exactly



to obtain the expression provided in the statement of the
proposition.

D. PROOF OF THEOREM 3.1
Spreading rate. Once again, under Protocol 1, GT is a

complete (d− 1)-ary tree (with the exception that the root
has d children) of depth T/2 whenever T is even. Whenever
T is odd, with probability α(T, h), GT is again such a (d−1)-
ary tree of depth (T + 1)/2. With probability 1 − α(T, h),
GT is made up of two (d − 1)-ary trees of depth (T − 1)/2
each with their roots connected by an edge. Therefore, it
follows that when d > 2, NT is given by

NT =


1, T = 0,

2(d−1)(T+1)/2

d−2
− 2

d−2
, T ≥ 1, T odd, w.p. (1− α) ,

d(d−1)(T+1)/2

d−2
− 2

d−2
, T ≥ 1, T odd, w.p. α ,

d(d−1)T/2

d−2
− 2

d−2
, T ≥ 2, T even ;

(29)
Similarly, when d = 2, NT can be expressed as follows:

NT =


1, T = 0,

T + 1, T ≥ 1, T odd, w.p. (1− α) ,
T + 2, T ≥ 1, T odd, w.p. α ,
T + 2, T ≥ 2, T even ;

(30)

The lower bound on NT in Equation (7) follows immediately
from the above expressions.

Probability of detection. For any given infected graph
GT , the virtual source vT cannot have been the source node,
since the true source always passes the token at timestep

t = 1. So P(GT |v = vT ) = 0. We claim that for any two
nodes that are not the virtual source at time T , u,w ∈ GT ,
P(GT |u) = P(GT |w) > 0. This is true iff for any non-virtual-
source node v, there exists a sequence of virtual sources vi

T
i=0

that evolves according to Protocol 1 with v0 = v that results
in the observed GT , and for all u,w ∈ GT \ {vT }, this se-
quence has the same likelihood. In a tree, a unique path ex-
ists between any pair of nodes, so we can always find a valid
path of virtual sources from a candidate node u ∈ GT \{vT }
to vT . We claim that any such path leads to the formation
of the observed GT . Due to regularity of G and the sym-
metry in GT , for even T , P(GT |v(1)) = P(GT |v(2)) for all

v(1), v(2) ∈ GT with δH(v(1), vT ) = δH(v(2), vT ). Moreover,
recall that the αd(t, h)’s were designed to satisfy the distri-
bution in Equation 11. Combining these two observations
with the fact that we have (d − 1)h infected nodes h-hops

away from the virtual source, we get that for all v(1), v(2) ∈
GT \ {vT }, P(GT |v(1)) = P(GT |v(2)). For odd T , if the vir-
tual source remains the virtual source, then GT stays sym-
metric about vT , in which case the same result holds. If the
virtual source passes the token, then GT is perfectly sym-
metric about the edge connecting vT−1 and vT . Since both
nodes are virtual sources (former and present, respectively)
and T > 1, the adversary can infer that neither node was the
true source. Since the two connected subtrees are symmetric
and each node within a subtree has the same likelihood of
being the source by construction (Equation 11), we get that

for all v(1), v(2) ∈ GT \{vT , vT−1}, P(GT |v(1)) = P(GT |v(2)).
Thus at odd timesteps, P(v̂ML = v∗) ≥ 1/(NT − 2).
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