Achieving budget-optimality with adaptive schemes in crowdsourcing

Sewoong Oh

Department of Industrial and Enterprise Systems Engineering
University of Illinois Urbana-Champaign

joint work with Ashish Khetan
(David Karger, Devavrat Shah, Jungseul Ok, Jinwoo Shin, Yung Yi)
Adaptive task assignment for crowdsourced classification

Sewoong Oh

Department of Industrial and Enterprise Systems Engineering
University of Illinois Urbana-Champaign

joint work with Ashish Khetan
(David Karger, Devavrat Shah, Jungseul Ok, Jinwoo Shin, Yung Yi)
Crowdsourcing systems
Marketplace to get labels for training data

airplanes?

Quality of the labels can be very low

70/100 30/100
Add redundancy to cope with noise

Tradeoff: redundancy vs. accuracy

- special to crowdsourcing system:
 - we pay for each response
 - we design the graph
 - workers arrive online fashion
Notations

- m questions
- unknown true answers $t \in \{-1, +1\}^m$
- task-assignment graph $G([m], [n], E)$

 $(i, j) \in E$ indicates that question i is asked to the j-th arriving worker
- n workers arrive online fashion and submit responses
- response matrix $A \in \{-1, 0, 1\}^{m \times n}$

\[
A_{ij} = \begin{cases}
0 & \text{if not assigned} \\
+1 & \text{if worker answers "+1"} \\
-1 & \text{if worker answers "−1"}
\end{cases}
\]

- Dawid-Skene model from 1979:
 - Each worker is parametrized by a scalar value $p_j \in [0, 1]$
 - For each assigned question, answers correctly with probability p_j

\[
A_{ij} = \begin{cases}
t_i & \text{with probability } p_j \\
-t_i & \text{with probability } 1 - p_j
\end{cases}
\]

- Criticism: all tasks are assumed to be equally difficult
Design:

1. Task assignment graph E
2. Inference algorithm $\hat{t}(A) \in \{-1, +1\}^m$

How does error rate trade-off with cost/redundancy?

$$
\mu \triangleq \frac{1}{n} \sum_{j=1}^{n} (2p_j - 1)
$$

$$
\sigma^2 \triangleq \frac{1}{n} \sum_{j=1}^{n} (2p_j - 1)^2
$$
Design:

1. Task assignment graph E
2. Inference algorithm $\hat{t}(A) \in \{-1, +1\}^m$

How does error rate trade-off with cost/redundancy?

$$
\mu \triangleq \frac{1}{n} \sum_{j=1}^{n} (2p_j - 1)
$$

$$
\sigma^2 \triangleq \frac{1}{n} \sum_{j=1}^{n} (2p_j - 1)^2
$$

![Task assignment graph](image)

Majority Voting

$$
\sim e^{-c\mu^2 \ell}
$$

Oracle Estimator

$$
\sim e^{-c'\sigma^2 \ell}
$$
Design:

1. Task assignment graph E
2. Inference algorithm $\hat{t}(A) \in \{-1, +1\}^m$

How does error rate trade-off with cost/redundancy?

$$
\mu \triangleq \frac{1}{n} \sum_{j=1}^{n} (2p_j - 1)
$$

$$
\sigma^2 \triangleq \frac{1}{n} \sum_{j=1}^{n} (2p_j - 1)^2
$$

<table>
<thead>
<tr>
<th></th>
<th>p_1</th>
<th>p_2</th>
<th>p_3</th>
<th>p_4</th>
<th>p_5</th>
<th>p_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
</tr>
<tr>
<td>t_2</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>t_3</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
</tr>
<tr>
<td>t_4</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>t_5</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cost (Number of assignments per task ℓ)</th>
<th>Probability of error</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>0.1</td>
</tr>
<tr>
<td>15</td>
<td>0.01</td>
</tr>
<tr>
<td>20</td>
<td>0.001</td>
</tr>
<tr>
<td>25</td>
<td>0.0001</td>
</tr>
<tr>
<td>30</td>
<td>1e-05</td>
</tr>
</tbody>
</table>

- Majority Voting $\sim e^{-c\mu^2\ell}$
- Iterative Algorithm $\sim e^{-c^\prime\sigma^2\ell}$
- Oracle Estimator $\sim e^{-c^\prime \sigma^2 \ell}$
What is known for DS model

\[\sigma^2 \triangleq \frac{1}{n} \sum_{j=1}^{n} (2p_j - 1)^2 \]

Achievability: random graph \(E \) and iterative inference achieves

\[P_{err} \leq e^{-c\sigma^2\ell} \]

Fundamental limit: the best task-assignment and inference is limited by

\[\min_{E,\hat{t}} \max_{t \in \{\pm 1\}^m, p \in F_{\sigma^2}} P_{err} \geq e^{-c'\sigma^2\ell} \]
What is known for DS model

quality of the crowd \(\sigma^2 \triangleq \frac{1}{n} \sum_{j=1}^{n} (2p_j - 1)^2 \)

Achievability: random graph \(E \) and iterative inference achieves

\[
P_{\text{err}} \leq e^{-c\sigma^2 \ell}
\]

Fundamental limit: the best task-assignment and inference is limited by

\[
\min_{E, \hat{t}} \max_{t \in \{\pm 1\}^m, p \in F_{\sigma^2}} P_{\text{err}} \geq e^{-c'\sigma^2 \ell}
\]

Fundamental limit: the best adaptive is limited by

\[
\min_{\text{all adaptive schemes}, \hat{t}} \max_{t \in \{\pm 1\}^m, p \in F_{\sigma^2}} P_{\text{err}} \geq e^{-c''\sigma^2 \ell}
\]
Adaptive schemes are common in practice

- in practice, adaptive schemes improve significantly
- in theory, the gain is minimal
Adaptive schemes are common in practice

- in practice, adaptive schemes improve significantly
- in theory, the gain is minimal

[Images of different landscapes and environments]
Adaptive schemes are common in practice

- in practice, adaptive schemes improve significantly
- in theory, the gain is minimal
Adaptive schemes are common in practice

- in practice, adaptive schemes improve significantly
- in theory, the gain is minimal
Adaptive schemes are common in practice

- in practice, adaptive schemes improve significantly
- in theory, the gain is minimal
Adaptive schemes are common in practice

- in practice, adaptive schemes improve significantly
- in theory, the gain is minimal
Adaptive schemes are common in practice

- in practice, adaptive schemes improve significantly
- in theory, the gain is minimal
Adaptive schemes are common in practice

- in practice, adaptive schemes improve significantly
- in theory, the gain is minimal
When does adaptivity help?
Generalized DS model [Zhou et al. ’15]

Definition

- Each task is parametrized by a scalar value $q_i \in [0, 1]$
- When a task is presented to a worker, it is perceived as a positive task with probability q_i

$$A_{ij} = \begin{cases} +1 & \text{with probability } q_ip_j + (1 - q_i)(1 - p_j) \\ -1 & \text{with probability } q_i(1 - p_j) + (1 - q_i)p_j \end{cases}$$

- ground truth is $t_i = \mathbb{I}(q_i > 0.5) - \mathbb{I}(q_i < 0.5)$
- difficulty level of a task i measured by $(2q_i - 1)^2$
Generalized DS model [Zhou et al. ’15]

Definition

- Each task is parametrized by a scalar value $q_i \in [0, 1]$
- When a task is presented to a worker, it is perceived as a positive task with probability q_i

\[
A_{ij} = \begin{cases}
+1 & \text{with probability } q_i p_j + (1 - q_i)(1 - p_j) \\
-1 & \text{with probability } q_i(1 - p_j) + (1 - q_i)p_j
\end{cases}
\]

- ground truth is $t_i = \mathbb{I}(q_i > 0.5) - \mathbb{I}(q_i < 0.5)$
- difficulty level of a task i measured by $(2q_i - 1)^2$
Generalized DS model with adaptive scheme

Collective task difficulty:

$$\rho^2 = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{(2q_i - 1)^2}$$

![Graph showing the relationship between redundancy and error probability for non-adaptive and adaptive inference methods.]

- Non-adaptive E
 - Majority voting
- Non-adaptive E
 - Iterative inference
 - $\approx e^{-c(2q_{\text{min}} - 1)^2 \sigma^2 \ell}$
- Adaptive E
 - Iterative inference
 - $\approx e^{-c' \rho^2 \sigma^2 \ell}$
Minimax rate for adaptive scenario

- Task difficulty:
 \[\rho^2 = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{(2q_i - 1)^2} \]

Fundamental limit: the best adaptive scheme and inference is limited by

\[\min_{\text{adaptive } E, \hat{t}} \max_{q \in G_{\rho^2}, p \in F_{\sigma^2}} P_{\text{err}} \geq e^{-C' \rho^2 \sigma^2 \ell} \]

Achievability: efficient adaptive scheme and inference achieves

\[P_{\text{err}} \leq e^{-C \rho^2 \sigma^2 \ell} \]

Fundamental limit: the best non-adaptive scheme is limited by

\[\min_{E, \hat{t}} \max_{q \in G_{\rho^2}, p \in F_{\sigma^2}} P_{\text{err}} \geq e^{-C'' (2q_{\text{min}} - 1)^2 \sigma^2 \ell} \]
Message-passing algorithm

- Two sets of messages:
 - Task messages \{\text{T}_i \rightarrow j\}, and worker messages \{\text{W}_j \rightarrow i\}
- Initialize worker messages as random Gaussian: \text{W}_j \rightarrow i \sim \mathcal{N}(1, 1)
- Iteratively update messages

Task-likelihood update

\[
\text{T}_{i \rightarrow j} = \sum_{j' \neq j} \text{W}_{j' \rightarrow i} \text{A}_{ij'}
\]

Worker-reliability update

\[
\text{W}_{j \rightarrow i} = \sum_{i' \neq i} \text{T}_{i' \rightarrow j} \text{A}_{i'j}
\]

A task is likely to be ‘+’ if reliable workers agree that it is ‘+’

A worker is reliable if the worker agreed with our belief on other tasks
1. DS model + non-adaptive scheme
1. DS model + non-adaptive scheme

\[P(T_{i\rightarrow j}|q_i = 0) \]

\[P(T_{i\rightarrow j}|q_i = 1) \]

\[T_{i\rightarrow j} = \sum A_{ik} W_{k\rightarrow i} \]
1. DS model + non-adaptive scheme

\[P(T_{i \rightarrow j} | q_i = 0) \]

\[P(T_{i \rightarrow j} | q_i = 1) \]
1. DS model + non-adaptive scheme

\[\mathbb{P}(T_{i\rightarrow j}|q_i = 0) \]

\[\mathbb{P}(T_{i\rightarrow j}|q_i = 1) \]

\[-1 \quad 0 \quad +1 \]

\[2q_i - 1 \]
1. DS model + non-adaptive scheme

\[\mathbb{P}(T_{i \rightarrow j} | q_i = 0) \]
\[\hat{t}_i = -1 \quad \hat{t}_i = +1 \]

\[\mathbb{P}(T_{i \rightarrow j} | q_i = 1) \]

\[\frac{1}{\sqrt{\sigma^2 \ell}} \]
1. DS model + non-adaptive scheme

\[\mathbb{P}(T_{i \rightarrow j} | q_i = 0) \]

\[\hat{t}_i = -1 \quad \hat{t}_i = +1 \]

\[\mathbb{P}(T_{i \rightarrow j} | q_i = 1) \]

\[P_{\text{err}} \leq e^{-C \sigma^2 \ell} \]
2. Generalized DS model + non-adaptive scheme
2. Generalized DS model + non-adaptive scheme

\[P(T_{i \rightarrow j} | q_i) \]
2. Generalized DS model + non-adaptive scheme

\[\hat{t}_i = -1 \quad \hat{t}_i = +1 \]

\[P(T_{i \rightarrow j} | q_i) \]

\[2q_i - 1 \]
2. Generalized DS model + non-adaptive scheme

\[\hat{t}_i = -1 \quad \hat{t}_i = +1 \]

\[P_{err} \leq e^{-C(2q_{\min} - 1)^2 \sigma^2 \ell} \]
3. Generalized DS model + adaptive scheme

- Repeat rounds $t \in \{1, 2, \ldots\}$
 - Assign tasks with random (ℓ_t, r)-regular random graph
 - Run iterative algorithm
 - Classify high-confidence tasks with threshold \mathcal{X}_t
3. Generalized DS model + adaptive scheme

- Repeat rounds $t \in \{1, 2, \ldots\}$
 - Assign tasks with random (ℓ_t, r)-regular random graph
 - Run iterative algorithm
 - Classify high-confidence tasks with threshold \mathcal{X}_t
3. Generalized DS model + adaptive scheme

- Repeat rounds $t \in \{1, 2, \ldots\}$
 - Assign tasks with random (ℓ_t, r)-regular random graph
 - Run iterative algorithm
 - Classify high-confidence tasks with threshold \mathcal{X}_t
3. Generalized DS model + adaptive scheme

- Repeat rounds $t \in \{1, 2, \ldots\}$
 - Assign tasks with random (ℓ_t, r)-regular random graph
 - Run iterative algorithm
 - Classify high-confidence tasks with threshold \mathcal{X}_t
3. Generalized DS model + adaptive scheme

- Repeat rounds \(t \in \{1, 2, \ldots \} \)
 - Assign tasks with random \((\ell_t, r)\)-regular random graph
 - Run iterative algorithm
 - Classify high-confidence tasks with threshold \(\mathcal{X}_t \)
3. Generalized DS model + adaptive scheme

- Repeat rounds $t \in \{1, 2, \ldots\}$
 - Assign tasks with random (ℓ_t, r)-regular random graph
 - Run iterative algorithm
 - Classify high-confidence tasks with threshold \mathcal{X}_t
3. Generalized DS model + adaptive scheme

\[\hat{t}_i = -1 \quad \text{or} \quad \hat{t}_i = +1 \]

- Repeat rounds \(t \in \{1, 2, \ldots\} \)
 - Assign tasks with random \((\ell_t, r)\)-regular random graph
 - Run iterative algorithm
 - Classify high-confidence tasks with threshold \(\lambda_t \)
Where did this algorithm come from?

- Spectral method

\[
A = \begin{bmatrix}
\frac{1}{n} \cdot t_i \cdot (2p_j - 1) & \frac{1}{n} \cdot t \cdot (2p - 1)^T
\end{bmatrix}
\]

- Random Perturbation

\[
E[A_{ij}|t_i, p_j] = \frac{\ell}{n} \cdot t_i \cdot (2p_j - 1)
\]

\[
E[A|t, p] = \frac{\ell}{n} \cdot t \cdot (2p - 1)^T
\]

- Singular vector of a non-backtracking matrix (widely used in community detection [Mossel et al. '13, Krzkala et al. '13, Bordenave et al. '14, Saade et al. '15, etc.])

- Belief propagation for approximating [Peng et al. 12]

\[
P(t_i|A)
\]
Recap

Dawid-Skene model

- Each worker with quality p_j

$$\sigma^2 = \frac{1}{n} \sum_{j=1}^{n} (2p_j - 1)^2$$

$$P_{err} \sim e^{-C\sigma^2\ell}$$

Criticism: homogeneous tasks

No gain in adaptivity
Recap

Dawid-Skene model

- Each worker with quality p_j
 \[\sigma^2 = \frac{1}{n} \sum_{j=1}^{n} (2p_j - 1)^2 \]
 \[P_{\text{err}} \approx e^{-C \sigma^2 \ell} \]

- Criticism: homogeneous tasks
- No gain in adaptivity

generalized Dawid-Skene

- Each task with difficulty q_i
 \[\rho^2 = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{(2q_i - 1)^2} \]
 \[P_{\text{err}} \approx e^{-C \rho^2 \sigma^2 \ell} \]

- non-adaptive limit:
 \[P_{\text{err}} \approx e^{-C (2q_{\text{min}} - 1)^2 \sigma^2 \ell} \]
Ongoing/future work

What about Belief Propagation and Expectation Maximization?

![Graph showing probability of error vs. number of workers per task]

- Majority voting
- Non-adaptive
- Lower bound

\[P_{\text{BP, err}} - P_{\text{LB, err}} \leq m - \gamma \text{ for some } \gamma > 0 \]
Ongoing/future work

What about Belief Propagation and Expectation Maximization?

[Ok, Oh, Shin, Yi ’16]

\[P_{\text{err}}^{\text{BP}} - P_{\text{err}}^{\text{LB}} \leq m^{-\gamma} \text{ for some } \gamma > 0 \]
Related work

- Crowdsourcing in machine learning
 - [ShengProvostIpeirotis2008] - first modern application of DS model
 - [WhitehillWuBergsmaMovellanRuvolo2009] - NIPS, release datasets
 - [WelinderBransonPeronaBelongie2010] - NIPS, release datasets
 - [GhoshKaleMcAfee2011] - first analysis of DS model $P_{\text{err}} \leq \frac{C}{\sigma^2 \ell}$
 - [HoJabbariVaughan2013] - online arrival of workers, mixture of DS model

- Lots of recent papers...

- In this talk...
 - *Optimality of Belief Propagation for Crowdsourced Classification*, Ok, O. Shin, Yi, ICML 2016