Matrix Factorization
at the Frontier of Non-convex Optimizations

Sewoong Oh

University of Illinois at Urbana Champaign
Industrial and Enterprise Systems Engineering Department
Welcome!

The organizing committee is excited to invite you to take part in ACM SIGMETRICS 2010. SIGMETRICS is the flagship conference of the ACM special interest group for the computer systems performance evaluation community.

The ACM SIGMETRICS conference solicits papers on the development and application of state-of-the-art, broadly applicable analytic, simulation, and measurement-based performance evaluation techniques. Of particular interest is work that furthers the state-of-the-art in performance evaluation methods, or work that creatively apply previously developed methods to understand or gain important insights into key design trade-offs in computer or network systems.

Announcements

- Congratulations to the winners of the best paper award given to Load Balancing via Randomized Local Search in Closed and Open Systems by A. Ganesh (Bristol University), S. Lilienthal (Cambridge University), D. Manjunath (IIT Mumbai), A. Proutiere (Microsoft Research), F. Simatos (INRIA)

- Congratulations to Amin Karbasi (EPFL) and Sewoong Oh (Stanford) for best student paper award with their paper Distributed Sensor Network Localization from Local Connectivity: Performance Analysis for the HOP-TERRAIN Algorithm

- Congratulations to the authors of the poster that won the student research competition with the poster ASTUTE: Detecting a Different Class of Traffic Anomalies by Fernando Silveira (Thomson and UPMC), Christophe Diot (Thomson), Nina Taft (Intel Labs Berkeley), Ramesh Govindan (University of Southern California)

- Congratulations to the authors of the the poster that won honorable mention for best poster with Deep Diving Into BitTorrent Locality by Ruben Cuevas (Univ. Carlos III de Madrid), Mark Bettini (Intel Labs Berkeley), Nelson Max (Intel Labs Berkeley), Michael Franklin (Univ. California Berkeley), Arvind Tomar (Intel Labs Berkeley), and Lixia Zhang (Intel Labs Berkeley)
Suppose each entry is sampled i.i.d. with probability \(p \), how large should \(|\Omega| \) be in order to recover the rank-\(r \) matrix \(M \)?

\[
|\Omega| \geq 2r d
\]
Convex relaxation

\[
\begin{align*}
\text{minimize} & \quad \sum_{(i,j) \in \Omega} (M_{ij} - X_{ij})^2 + \lambda \text{rank}(X) \\
\text{subject to} & \quad X \in \mathbb{R}^{d \times d}
\end{align*}
\]
Convex relaxation

\[
\begin{align*}
\text{minimize} & \quad \sum_{(i,j) \in \Omega} (M_{ij} - X_{ij})^2 + \lambda \|X\|_* \\
X \in & \mathbb{R}^{d \times d}
\end{align*}
\]

(informal) Theorem

[CandesRecht08, CandesTao09, Gross10, Recht10, NegahbanWainwright11]

Exact recovery with high probability if and only if

\[|\Omega| \geq C r d \log d.\]

SemiDefinite Program (SDP)

- requires memory \(d^2\)
- requires \(d^3\) computation per iteration
- low-rank solution is not guaranteed
Non-convex optimization

\[\text{minimize} \quad \sum_{(i,j) \in \Omega} (M_{ij} - (UV^T)_{ij})^2 \]

- **Convex approach**
 - \(d^2\) memory
 - \(d^3\) computation per iteration
 - low-rank not guaranteed

- **Non-convex approach**
 - \(2rd\) memory
 - \(|\Omega|\) computation per iteration
 - low-rank solution guaranteed

[BurerMoteiro03, Simon Funk 07]
Non-convex optimization

Random Initialization + Gradient Descent

1000×1000 rank 10 matrix with 8% of entries sampled

Jellyfish [RechtRé13]
2-phase approach: Spectral Initialization + Gradient Descent

Random Initialization + GD

Spectral Initialization + GD

[FriedmanKahnSzemeredi89]
Conjectures for OptSpace

1. Spectral Initialization
2. Local Geometry
Spectral Initialization

\[
\text{SVD}(\begin{pmatrix} \sigma_1 & \sigma_2 & \sigma_3 \\
\sigma_{spurious} \end{pmatrix})
\]

\[\text{FriedmanKahnSzemeredi89}\]
Spectral Initialization

\[\text{SVD} \]

\[\sigma_1 \approx \log d \quad \sigma_2 \approx \log \log d \]

[1989FriedmanKahnSzemeredi]
Spectral Initialization

\[
\begin{align*}
\text{SVD} & \\
\sigma_1 & \approx \log d \\
\sigma_2 & \approx \log \log d \\
\sigma_{\text{spurious}} & \approx \log d \\
\text{[FriedmanKahnSzemeredi89]}
\end{align*}
\]
Resolve conjecture 1

1. Spectral initialization gets us δ close to M if

$$|\Omega| \geq C \frac{r d}{\delta^2}$$

2. Local Geometry
\[F(U, V) = \sum_{(i, j) \in \Omega} (M_{ij} - (UV^T)_{ij})^2 \]

1. Gradient Descent stays inside \(c\delta \)-ball
\[F(U, V) = \sum_{(i,j) \in \Omega} (M_{ij} - (UV^T)_{ij})^2 \]

1. Gradient Descent stays inside \(c\delta \)-ball
\[C_1 \|M - UV^T\|_F^2 \geq F(U, V) \geq C_2 \|M - UV^T\|_F^2 \]
\[F(U, V) = \sum_{(i,j) \in \Omega} (M_{ij} - (UV^T)_{ij})^2 \]

1. Gradient Descent stays inside \(c\delta \)-ball

\[C_1 \| M - UV^T \|_F^2 \geq F(U, V) \geq C_2 \| M - UV^T \|_F^2 \]
\[F(U, V) = \sum_{(i,j) \in \Omega} (M_{ij} - (UV^T)_{ij})^2 \]

1. Gradient Descent stays inside \(c \delta \)-ball

\[C_1 \|M - UV^T\|_F^2 \geq F(U, V) \geq C_2 \|M - UV^T\|_F^2 \]

2. Inside \(c \delta \)-ball, gradient vanishes only at global minima

\[\|\nabla F(U, V)\|_F^2 \geq C \|M - UV^T\|_F^2 \]
\[F(U, V) = \sum_{(i,j) \in \Omega} (M_{ij} - (UV^T)_{ij})^2 \]

1. Gradient Descent stays inside \(c\delta \)-ball

\[C_1 \|M - UV^T\|_F^2 \geq F(U, V) \geq C_2 \|M - UV^T\|_F^2 \]

2. Inside \(c\delta \)-ball, gradient vanishes only at global minima

\[\|\nabla F(U, V)\|_F^2 \geq C \|M - UV^T\|_F^2 \]
Proof sketch

1. Gradient Descent stays inside $c\delta$-ball

\[C_1 \| M - UV^T \|_F^2 \geq F(U, V) \geq C_2 \| M - UV^T \|_F^2 \]

Lemma. [CandesRecht08]

If $|\Omega| \geq crd \log d$ then for all M and UV^T that are rank-r and incoherent,

\[\frac{1}{|\Omega|} \sum_{(i,j) \in \Omega} (M_{ij} - (UV^T)_{ij})^2 \approx \frac{1}{d^2} \| M - UV^T \|_F^2 \]
1. Spectral initialization gets us δ close to the global minimum if
$$|\Omega| \geq C \frac{r d}{\delta^2}$$

2. Gradient Descent converges to M if
$$|\Omega| \geq C r d \log d$$
Recap: **OPTSPACE**

2-phase approach: Spectral Initialization + Gradient Descent

Followed by a productive line of research in

[JainNetrapalliSanghavi13] [Hardt14] [HardtWooters14] [JainNetrapalli14] [HastieMazumderLeeZadeh14] [SunLuo14] [ChenWainwright15] [ZhengLafferty16]
Are some non-convex optimizations as easy as convex optimizations?

- Does first-order methods converge from random initialization?
- there are no spurious local minima [GeLeeMa16, GeJinZheng17]
- saddle points can be escaped by
 [NesterovPolyak06, SunQuWright15, GeHuangJinYuan15, Levy16, LeeSimchowitzJordanRecht16, JinGeNetrapalliKakadeJordan17]
Matrix Completion

- [CandesRecht08][CandesTao09][CandesPlan09][Gross11][Recht11][NegahbanWainwright10][BhojanapalliJainSanghavi15][SingerCucuringu08][RhodeTsybakov09][ChenXuCaramanisSanghavi11][FoygelSrebro11][SrebroJaaakkola03][CaiCandesShen08][MaGoldfardChen09][MazumdarHastieTibshirani09][TohYun09][WenYinZhang10][BalzanoNowakRecht10]

Convex relaxation

- [KeshavanMontanariOh09a,b][LeeBresler09][DaiMilenkovic09][MekaJainDhillon09][KimYedlaPfister10][RechtRe10][KeshavanMontanari10][JainNetrapalliSanghavi12][Hardt14][SunLuo15][ZhengLafferty16][GeLeeMa16][GeJinZheng17][BhojanapalliNeyshaburSrebro16]

2-Phase non-convex method

Global geometry
Matrix Completion
[CandesRecht08][SingerCucuringu08][RhodeTsybakov09][CandesTao09][CandesPlan09][NegahbanWainwright10][Gross11][Recht11][ChenXuCaramanisSanghavi11][FoygelSrebro11][BhojanapalliJainSanghavi15][SrebroJaaakkola03][CaiCandesShen08][MaGoldfardChen09][MazumdarHastieTibshirani09][TohYun09][WenYinZhang10][BalzanoNowakRecht10][KeshavanMontanariOh09a,b][LeeBresler09][DaiMilenkovic09][MekaJainDhillon09][KimYedlaPfister10][RechtRe10][KeshavanMontanari10][JainNetrapalliSanghavi12][Hardt14][SunLuo15][ZhengLafferty16][BhojanapalliNeyshaburSrebro16][GeLeeMa16][GeJinZheng17]

Phase Retrieval

Tensor Completion

Robust PCA
[DevlinGnanadesikanKettenring1981][XuYuille1995][CandesLiMaWright09][WrightPengMaGaneshRao09][ChandrasekaranSanghaviParriloWillsky09][LinChenMa10][XuCaramanisSanghavi10][HsuKakadeZhang11][AgarwalNegahbanWainwright12][WangHongMaLuo13][SedghiAnandkumarJonckheere14]

Choice Modeling
[Thurstone1927][LuNegahban14][ParkNeemanZhangSanghavi15][OhThekumparampiXu15]

Dictionary Learning, Community Detection, Synchronization...
Crowdsourcing systems: When does adaptivity help?

Market to get labels for training data

airplanes? Yes No

Quality of the labels can be very low
Add redundancy to cope with noise

Tradeoff: redundancy vs. accuracy

- special to crowdsourcing system:
 - we design the graph
 - workers arrive online fashion
Notations

- **m** questions
- unknown true answers $t \in \{-1, +1\}^m$
- task-assignment graph $G([m], [n], E)$

$(i, j) \in E$ indicates that question i is asked to the j-th arriving worker

- **n** workers arrive online fashion and submit responses
- response matrix $A \in \{-1, 0, 1\}^{m \times n}$

$$A_{ij} = \begin{cases}
0 & \text{if not assigned} \\
+1 & \text{if worker answers "+1"} \\
-1 & \text{if worker answers "-1"}
\end{cases}$$

- Dawid-Skene model from 1979:
 - Each worker is parametrized by a scalar value $p_j \in [0, 1]$
 - For each assigned question, answers correctly with probability p_j

$$A_{ij} = \begin{cases}
t_i & \text{with probability } p_j \\
-t_i & \text{with probability } 1 - p_j
\end{cases}$$

- **Criticism**: all tasks are assumed to be equally difficult
Redundancy vs. Error Rate

\[\mu \triangleq \frac{1}{n} \sum_{j=1}^{n} (2p_j - 1) \]

\[\sigma^2 \triangleq \frac{1}{n} \sum_{j=1}^{n} (2p_j - 1)^2 \]

\[\ell \text{ answers per task} \]

<table>
<thead>
<tr>
<th>t1</th>
<th>p1</th>
<th>p2</th>
<th>p3</th>
<th>p4</th>
<th>p5</th>
<th>p6</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>t2</th>
<th>p1</th>
<th>p2</th>
<th>p3</th>
<th>p4</th>
<th>p5</th>
<th>p6</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>t3</th>
<th>p1</th>
<th>p2</th>
<th>p3</th>
<th>p4</th>
<th>p5</th>
<th>p6</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>t4</th>
<th>p1</th>
<th>p2</th>
<th>p3</th>
<th>p4</th>
<th>p5</th>
<th>p6</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>t5</th>
<th>p1</th>
<th>p2</th>
<th>p3</th>
<th>p4</th>
<th>p5</th>
<th>p6</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Redundancy vs. Error Rate

\[\mu \equiv \frac{1}{n} \sum_{j=1}^{n} (2p_j - 1) \]

\[\sigma^2 \equiv \frac{1}{n} \sum_{j=1}^{n} (2p_j - 1)^2 \]

\(\ell \) answers per task

\(\approx e^{-c\sigma^2\ell} \)
Majority Voting

\(\approx e^{-c\mu^2\ell} \)
Lower Bound
Redundancy vs. Error Rate

\[\mu \triangleq \frac{1}{n} \sum_{j=1}^{n} (2p_j - 1) \]

\[\sigma^2 \triangleq \frac{1}{n} \sum_{j=1}^{n} (2p_j - 1)^2 \]

\[\ell \text{ answers per task} \]

\[\sim e^{-c\mu^2\ell} \]

\[\sim e^{-c''\sigma^2\ell} \]

\[\sim e^{-c'\sigma^2\ell} \]

 Majority Voting

Spectral Algo.

Lower Bound
Dawid-Skene model [KargerOhShah11]

quality of the crowd \[\sigma^2 \triangleq \frac{1}{n} \sum_{j=1}^{n} (2p_j - 1)^2 \]

Achievability: random graph \(E \) and SPECTRAL ALGORITHM achieves
\[P_{\text{err}} \leq e^{-c\sigma^2\ell} \]

Fundamental limit: the best task-assignment and inference is limited by
\[\min_{E,\hat{t}} \max_{t \in \{\pm1\}^m, p \in \mathcal{F}_{\sigma^2}} P_{\text{err}} \geq e^{-c'\sigma^2\ell} \]
Dawid-Skene model [KargerOhShah11]

quality of the crowd \(\sigma^2 \triangleq \frac{1}{n} \sum_{j=1}^{n} (2p_j - 1)^2 \)

Achievability: random graph \(E \) and **Spectral Algorithm** achieves

\[
P_{\text{err}} \leq e^{-c\sigma^2 \ell}
\]

Fundamental limit: the best task-assignment and inference is limited by

\[
\min_{E, \hat{t}} \max_{t \in \{\pm 1\}^m, p \in \mathcal{F}_{\sigma^2}} P_{\text{err}} \geq e^{-c'\sigma^2 \ell}
\]

Disturbing fact: the best adaptive scheme is limited by

\[
\min_{\text{all adaptive schemes}, \hat{t}} \max_{t \in \{\pm 1\}^m, p \in \mathcal{F}_{\sigma^2}} P_{\text{err}} \geq e^{-c''\sigma^2 \ell}
\]
Adaptive schemes are common in practice

- in practice, adaptive schemes improve significantly
- in theory, the gain is minimal
Adaptive schemes are common in practice

- in practice, adaptive schemes improve significantly
- in theory, the gain is minimal
Adaptive schemes are common in practice

- in practice, adaptive schemes improve significantly
- in theory, the gain is minimal
Adaptive schemes are common in practice

- in practice, adaptive schemes improve significantly
- in theory, the gain is minimal
Adaptive schemes are common in practice

- in practice, adaptive schemes improve significantly
- in theory, the gain is minimal
Adaptive schemes are common in practice

- in practice, adaptive schemes improve significantly
- in theory, the gain is minimal
Adaptive schemes are common in practice

- in practice, adaptive schemes improve significantly
- in theory, the gain is minimal
Adaptive schemes are common in practice

- in practice, adaptive schemes improve significantly
- in theory, the gain is minimal
Generalized DS model [ZhouLiuPlattMeekShah15]

Definition

- Each task is parametrized by a scalar value $q_i \in [0, 1]$
- When a task is presented to a worker, it is perceived as a positive task with probability q_i

$$A_{ij} = \begin{cases}
+1 & \text{with probability } q_i p_j + (1 - q_i)(1 - p_j) \\
-1 & \text{with probability } q_i(1 - p_j) + (1 - q_i)p_j
\end{cases}$$

- ground truth is $t_i = \mathbb{I}(q_i > 0.5) - \mathbb{I}(q_i < 0.5)$
- difficulty level of a task i measured by $(2q_i - 1)^2$
- recovers the DS model when all $q_i \in \{0, 1\}$
Does adaptivity help?

Collective task difficulty:

\[
\rho_{\text{min}}^2 = \min_i (q_i - 1)^2,
\]

\[
\rho^2 = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{(2q_i - 1)^2}
\]

\[
\approx e^{-c\rho_{\text{min}}^2 \mu^2 \ell}
\]

Non-adaptive E

Majority voting

\[
\approx e^{-c\rho_{\text{min}}^2 \sigma^2 \ell}
\]

Non-adaptive E

Spectral Algorithm

\[
\approx e^{-c' \rho^2 \sigma^2 \ell}
\]

Adaptive E

Spectral Algorithm
Minimax rate for adaptive scenario [KhetanOh16]

- task difficulty $\rho^2 = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{(2q_i - 1)^2}$

Fundamental limit: the best adaptive scheme and inference is limited by

$$\min_{\text{adaptive } E, \hat{t}} \max_{q \in G_{\rho^2}, p \in F_{\sigma^2}} P_{\text{err}} \geq e^{-C' \rho^2 \sigma^2 \ell}$$

Achievability: efficient adaptive scheme and inference achieves

$$P_{\text{err}} \leq e^{-C \rho^2 \sigma^2 \ell}$$

Fundamental limit: the best non-adaptive scheme is limited by

$$\min_{E, \hat{t}} \max_{q \in G_{\rho^2}, p \in F_{\sigma^2}} P_{\text{err}} \geq e^{-C'' \rho^2 \sigma^2 \ell}$$
Spectral Algorithm for the original DS model

- Noisy Matrix Completion

\[A = \mathbb{E}[A|t, p] + \text{Random Perturbation} \]

\[\mathbb{E}[A_{ij}|t_i, p_j] = \frac{\ell}{n} \cdot t_i \cdot (2p_j - 1) \]

\[\mathbb{E}[A|t, p] = \frac{\ell}{n} \cdot t \cdot (2p - 1)^T \]

- Matrix completion algorithm only gives

\[P_{err} \leq \frac{C}{\sigma^2 \ell} \]
Spectral Algorithm

- **Message-passing algorithm**
 - Two sets of messages:
 - Task messages $\{ T_{i\rightarrow j} \}$, and worker messages $\{ W_{j\rightarrow i} \}$
 - Initialize worker messages as random Gaussian: $W_{j\rightarrow i} \sim N(1, 1)$
 - Iteratively update messages
 - Task-likelihood update
 $$ T_{i\rightarrow j} = \sum_{j' \neq j} W_{j'\rightarrow i} A_{ij'} $$
 - Worker-reliability update
 $$ W_{j\rightarrow i} = \sum_{i' \neq i} T_{i'\rightarrow j} A_{i'j} $$

A task is likely to be ‘+’ if reliable workers agree that it is ‘+’

A worker is reliable if the worker agreed with our belief on other tasks
DS model + non-adaptive scheme
DS model + non-adaptive scheme

\[P(T_{i\rightarrow j} | q_i = 0) \]

\[P(T_{i\rightarrow j} | q_i = 1) \]

\[T_{i\rightarrow j} = \sum A_{ik} W_{k\rightarrow i} \]
DS model + non-adaptive scheme

\[P(T_{i \rightarrow j} | q_i = 0) \]

\[P(T_{i \rightarrow j} | q_i = 1) \]
DS model + non-adaptive scheme

\[P(T_{i\rightarrow j} | q_i = 0) \]

\[P(T_{i\rightarrow j} | q_i = 1) \]
DS model + non-adaptive scheme

\[\hat{t}_i = -1 \quad \hat{t}_i = +1 \]

\[\mathbb{P}(T_{i \rightarrow j} | q_i = 0) \]

\[\mathbb{P}(T_{i \rightarrow j} | q_i = 1) \]

\[\frac{1}{\sqrt{\sigma^2 \ell}} \]
DS model + non-adaptive scheme

\[\Pr(T_{i \rightarrow j} | q_i = 0) \]

\[\hat{t}_i = -1 \quad \hat{t}_i = +1 \]

\[\frac{1}{\sqrt{\sigma^2 \ell}} \]

\[P_{err} \leq e^{-C \sigma^2 \ell} \]
Generalized DS model + adaptive scheme

Repeat rounds $t \in \{1, 2, \ldots\}$
- Assign tasks with random (ℓ_t, r)-regular random graph
- Run **Spectral Algorithm**
- classify high-confidence tasks with threshold \mathcal{X}_t
Generalized DS model + adaptive scheme

- Repeat rounds $t \in \{1, 2, \ldots \}$
 - Assign tasks with random (ℓ_t, r)-regular random graph
 - Run Spectral Algorithm
 - Classify high-confidence tasks with threshold \mathcal{X}_t
Generalized DS model + adaptive scheme

Repeat rounds $t \in \{1, 2, \ldots\}$

- Assign tasks with random (ℓ_t, r)-regular random graph
- Run **SPECTRAL ALGORITHM**
- Classify high-confidence tasks with threshold \mathcal{X}_t
Generalized DS model + adaptive scheme

Repeat rounds $t \in \{1, 2, \ldots\}$
- Assign tasks with random (ℓ_t, r)-regular random graph
- Run SPECTRAL ALGORITHM
- classify high-confidence tasks with threshold \mathcal{X}_t
Generalized DS model + adaptive scheme

Repeat rounds $t \in \{1, 2, \ldots\}$

- Assign tasks with random (ℓ_t, r)-regular random graph
- Run **Spectral Algorithm**
- Classify high-confidence tasks with threshold \mathcal{X}_t
Generalized DS model + adaptive scheme

- Repeat rounds $t \in \{1, 2, \ldots\}$
 - Assign tasks with random (ℓ_t, r)-regular random graph
 - Run Spectral Algorithm
 - Classify high-confidence tasks with threshold κ_t
Generalized DS model + adaptive scheme

\[\hat{t}_i = -1 \quad \rightarrow \quad \hat{t}_i = +1 \]

Repeat rounds \(t \in \{1, 2, \ldots\} \)
- Assign tasks with random \((\ell_t, r)\)-regular random graph
- Run Spectral Algorithm
- Classify high-confidence tasks with threshold \(\mathcal{X}_t \)
Why use only spectral?

Two 2-phase approaches

Number of workers per task ℓ

Probability of error

$\textbf{Majority Voting}$

$\textbf{SPECTRAL ALGO.}$

$\textbf{Lower Bound}$

- Majority Voting
- Spectral Algo.
- Lower Bound

For general k-ary classification and general random sampling, $P_{\text{err}} \leq e^{-C \sigma^2 \ell^{31/33}}$
Why use only spectral?

Two 2-phase approaches

![Graph showing the probability of error as a function of the number of workers per task.](image)

- **Expectation-Maximization**
- **Majority Voting**
- **Spectral Algo.**
- **Lower Bound**

Tensor Decomposition + EM [ZhangChenZhouJordan14]

For general k-ary classification and general random sampling,

$$P_{err}^{EM} \leq e^{-C\sigma^2\ell}$$
Why use only spectral?

Two 2-phase approaches

Spectral + BP [OkOhShinYi16]

Belief propagation is near-optimal

\[P_{\text{err}}^{\text{BP}} - P_{\text{err}}^{\text{LB}} \leq m^{-\gamma} \quad \text{for some } \gamma > 0 \]
Modeling/Inference

[DawidSkene1979][SmythFayyadBurl1995]
[JinGhahramani03][ShengProvostIpeirotis08]
[WhitehillWuBergsmaMovellanRuvolo09]
[WelinderBransonPeronaBelongie10]
[WauthierJordan11][GhoshKaleMcAfee11]
[ErtekinHirshRudin11][KargerOhShah11,13]
[LiuPengIhler12][ZhouPlattBasuMao12]
[DalviDasguptaKumarRastogi13][GaoZhou13]
[LiYu14][ZhangChenZhouJordan14]
[LeeKimLeeJung15]
[ShahBalakrishnanWainwright16]
[OkOhShinYi16][BonaldCombex16]

Online/Active Learning

[DonmezCarbonellSchneider09]
[ZhengScottDeng10][YanRosalesFungDy11]
[HoJabbariVaughan13][ChenLinZhou15]
[ChenAgarwalWiermanBarmanAndrew15]
[LiuLiu15][KhetanOh16][BonaldCombex16]
[MassoulieXu16][JunJamiesonNowakZhu16]

Incentive Mechanism

[DiPalantinoVojnovic09]
[ArchakSundararajan09][MasonWatts09]
[SingerMittal11,13]
[DuanKuboSugiyamaHuangHasegawaWalrand12][ZhangVanDerSchaar12]
[YangXueFangTang12][AzarChenMicali12]
[Koutsoupo13][SinglaKrause13]
[ZhangYangZhouCaiChenLi14]
[ChawlaHartlineSivan15]
[ZhangXueYuYangTang15][ShahZhou15,16]
[ZhaoLiMa17]

Complex Tasks

[BernsteinBrandtMillerKarger11]
[MarcusKargerMaddenMillerOh12]
[WuFanYu12][PengQiangIhlerBerger13]
[SuDengFeiFei12]
[LeeSteyversYoungDeMiller16]
[OkOhShinJangYi17]

Systems/Database
Collaborators on Matrix Completion and Crowdsourcing

Andrea Montanari Raghunandan Keshavan Devavrat Shah David R. Karger
Prateek Jain Jiaming Xu Ashish Khetan Kiran Thekumparampil
Jungseul Ok Jinwoo Shin Yung Yi
Experiments using Amazon Mechanical Turk

- Learning similarities using Crowdsourcing
 - recommendations
 - searching

You wanted to get the tie on the top, but it was not available. Which one would be a better substitute?

- [] the tie the left
- [x] the tie on the right
Experiments using Amazon Mechanical Turk

- Learning similarities using Crowdsourcing
 - recommendations
 - searching

Which tie matches my shirt better?
- [] the tie on the left
- [x] the tie on the right
Experiments using Amazon Mechanical Turk

Which colors...
- left
- right

Number of responses per task

Probability of error

- EM Algorithm: 0.14
- Majority voting: 0.12
- Spectral Algo.: 0.06
Experiments using Amazon Mechanical Turk

Which colors...

- left
- right

Number of responses per task

Average probability of error

- EM Algorithm
- Majority voting
- Spectral Algo.