Achieving budget-optimality with adaptive schemes in crowdsourcing

Sewoong Oh

Department of Industrial and Enterprise Systems Engineering
University of Illinois Urbana-Champaign

joint work with Ashish Khetan
(David Karger, Devavrat Shah, Jungseul Ok, Jinwoo Shin, Yung Yi)
Crowdsourcing systems

Marketplace to get labels for training data

airplanes?
<table>
<thead>
<tr>
<th>Yes</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>

Quality of the labels can be very low

70/100 30/100
Add redundancy to cope with noise
Add redundancy to cope with noise.
Add redundancy to cope with noise

Majority Voting
Add redundancy to cope with noise

Tradeoff: redundancy vs. accuracy

- special to crowdsourcing system:
 - we pay for each response
 - we design the graph
 - workers arrive online fashion
Notations

- \(m \) questions
- unknown true answers \(t \in \{-1, +1\}^m \)
- task-assignment graph \(G([m], [n], E) \)
 \((i, j) \in E\) indicates that question \(i \) is asked to the \(j \)-th arriving worker
- \(n \) workers arrive online fashion and submit responses
- response matrix \(A \in \{-1, 0, 1\}^{m \times n} \)
 \[A_{ij} = \begin{cases}
 0 & \text{if not assigned} \\
 +1 & \text{if worker answers “+1”} \\
 -1 & \text{if worker answers “−1”}
 \end{cases} \]

- Dawid-Skene model from 1979:
 - Each worker is parametrized by a scalar value \(p_j \in [0, 1] \)
 - For each assigned question, answers correctly with probability \(p_j \)
 \[A_{ij} = \begin{cases}
 t_i & \text{with probability} \ p_j \\
 -t_i & \text{with probability} \ 1 - p_j
 \end{cases} \]
 - Criticism: all tasks are assumed to be equally difficult
Design:

1. Task assignment graph E
2. Inference algorithm $\hat{t}(A) \in \{-1, +1\}^m$

How does error rate trade-off with cost/redundancy?

$$\mu \triangleq \frac{1}{n} \sum_{j=1}^{n} (2p_j - 1)$$

$$\sigma^2 \triangleq \frac{1}{n} \sum_{j=1}^{n} (2p_j - 1)^2$$

<table>
<thead>
<tr>
<th>t_1</th>
<th>t_2</th>
<th>t_3</th>
<th>t_3</th>
<th>t_4</th>
<th>t_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_1</td>
<td>-1</td>
<td>$+1$</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>p_2</td>
<td>$+1$</td>
<td>$+1$</td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_3</td>
<td></td>
<td></td>
<td>$+1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_4</td>
<td></td>
<td></td>
<td></td>
<td>$+1$</td>
<td></td>
</tr>
<tr>
<td>p_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1</td>
</tr>
<tr>
<td>p_6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1</td>
</tr>
</tbody>
</table>
Design:

1. Task assignment graph E
2. Inference algorithm $\hat{t}(A) \in \{-1, +1\}^m$

How does error rate trade-off with cost/redundancy?

$$\mu \triangleq \frac{1}{n} \sum_{j=1}^{n} (2p_j - 1)$$

$$\sigma^2 \triangleq \frac{1}{n} \sum_{j=1}^{n} (2p_j - 1)^2$$

- Majority Voting
 - $\sim e^{-c\mu^2 \ell}$
- Oracle Estimator
 - $\sim e^{-c'\sigma^2 \ell}$

Cost = Number of assignments per task ℓ

Probability of error

ℓ answers per task
Design:

1. Task assignment graph E
2. Inference algorithm $\hat{t}(A) \in \{-1, +1\}^m$

How does error rate trade-off with cost/redundancy?

\[
\mu \triangleq \frac{1}{n} \sum_{j=1}^{n} (2p_j - 1)
\]

\[
\sigma^2 \triangleq \frac{1}{n} \sum_{j=1}^{n} (2p_j - 1)^2
\]
What is known for DS model [KargerOhShah2011]

quality of the crowd \(\sigma^2 \triangleq \frac{1}{n} \sum_{j=1}^{n} (2p_j - 1)^2 \)

Achievability: random graph \(E \) and **Iterative Algorithm** achieves

\[
P_{\text{err}} \leq e^{-c\sigma^2 \ell}
\]

Fundamental limit: the best task-assignment and inference is limited by

\[
\min_{E, \hat{t}} \max_{t \in \{\pm 1\}^m, p \in \mathcal{F}_{\sigma^2}} P_{\text{err}} \geq e^{-c'\sigma^2 \ell}
\]
What is known for DS model [KargerOhShah2011]

quality of the crowd \(\sigma^2 \triangleq \frac{1}{n} \sum_{j=1}^{n} (2p_j - 1)^2 \)

Achievability: random graph \(E \) and Iterative Algorithm achieves

\[
P_{\text{err}} \leq e^{-c \sigma^2 \ell}
\]

Fundamental limit: the best task-assignment and inference is limited by

\[
\min_{E, \hat{t}} \max_{t \in \{\pm 1\}^m, p \in \mathcal{F}_{\sigma^2}} P_{\text{err}} \geq e^{-c' \sigma^2 \ell}
\]

Disturbing fact: the best adaptive scheme is limited by

\[
\min_{\text{all adaptive schemes}, \hat{t}} \max_{t \in \{\pm 1\}^m, p \in \mathcal{F}_{\sigma^2}} P_{\text{err}} \geq e^{-c'' \sigma^2 \ell}
\]
Experiments using Amazon Mechanical Turk

- Learning similarities using Crowdsourcing
 - recommendations
 - searching

You wanted to get the tie on the top, but it was not available. Which one would be a better substitute?

- the tie the left
- the tie on the right
Experiments using Amazon Mechanical Turk

- Learning similarities using Crowdsourcing
 - recommendations
 - searching

Which tie matches my shirt better?

- [] the tie on the left
- [x] the tie on the right
Experiments using Amazon Mechanical Turk

- Number of responses per task
- Probability of error

- Which colors...
 - left
 - right

- 0.14 EM Algorithm
- 0.12 Majority voting
- 0.06 Iterative Algo.
Experiments using Amazon Mechanical Turk

Which colors...

- left
- right

Number of responses per task

Average probability of error

- EM Algorithm
- Majority voting
- ITERATIVE ALGO.
Adaptive schemes are common in practice

- in practice, adaptive schemes improve significantly
- in theory, the gain is minimal
Adaptive schemes are common in practice

- in practice, adaptive schemes improve significantly
- in theory, the gain is minimal
Adaptive schemes are common in practice

- in practice, adaptive schemes improve significantly
- in theory, the gain is minimal
Adaptive schemes are common in practice

- in practice, adaptive schemes improve significantly
- in theory, the gain is minimal
Adaptive schemes are common in practice

- in practice, adaptive schemes improve significantly
- in theory, the gain is minimal
Adaptive schemes are common in practice

- in practice, adaptive schemes improve significantly
- in theory, the gain is minimal
Adaptive schemes are common in practice

- in practice, adaptive schemes improve significantly
- in theory, the gain is minimal
Adaptive schemes are common in practice

- in practice, adaptive schemes improve significantly
- in theory, the gain is minimal
When does adaptivity help?
Generalized DS model [Zhou et al. ’15]

- **Definition**
 - Each task is parametrized by a scalar value $q_i \in [0, 1]$
 - When a task is presented to a worker, it is perceived as a positive task with probability q_i

$$A_{ij} = \begin{cases}
+1 & \text{with probability } q_ip_j + (1 - q_i)(1 - p_j) \\
-1 & \text{with probability } q_i(1 - p_j) + (1 - q_i)p_j
\end{cases}$$

- ground truth is $t_i = \mathbb{I}(q_i > 0.5) - \mathbb{I}(q_i < 0.5)$
- difficulty level of a task i measured by $(2q_i - 1)^2$
- recovers the DS model when all $q_i \in \{0, 1\}$
Generalized DS model [Zhou et al. ’15]

Definition

- Each task is parametrized by a scalar value $q_i \in [0, 1]$
- When a task is presented to a worker, it is perceived as a positive task with probability q_i

$$A_{ij} = \begin{cases} +1 & \text{with probability } q_ip_j + (1 - q_i)(1 - p_j) \\ -1 & \text{with probability } q_i(1 - p_j) + (1 - q_i)p_j \end{cases}$$

- ground truth is $t_i = \mathbb{I}(q_i > 0.5) - \mathbb{I}(q_i < 0.5)$
- difficulty level of a task i measured by $(2q_i - 1)^2$
- recovers the DS model when all $q_i \in \{0, 1\}$
Generalized DS model with adaptive scheme

Collective task difficulty:

$$\rho^2 = \frac{1}{m \sum_{i=1}^{m} \frac{1}{(2q_i - 1)^2}}$$

$$\approx e^{-c(2q_{\min} - 1)^2 \mu^2 \ell}$$
Non-adaptive E
Majority voting

$$\approx e^{-c(2q_{\min} - 1)^2 \sigma^2 \ell}$$
Non-adaptive E
Iterative Algorithm

$$\approx e^{-c' \rho^2 \sigma^2 \ell}$$
Adaptive E
Iterative Algorithm
Minimax rate for adaptive scenario [KhetanOh16]

- task difficulty $\rho^2 = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{(2q_i-1)^2}$
Minimax rate for adaptive scenario [KhetanOh16]

- task difficulty \(\rho^2 = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{(2q_i - 1)^2} \)

Fundamental limit: the best adaptive scheme and inference is limited by

\[
\min_{\text{adaptive}} \mathbb{E}, \hat{t} \quad \max_{q \in \mathcal{G}_{\rho^2}, p \in \mathcal{F}_{\sigma^2}} P_{\text{err}} \geq e^{-C' \rho^2 \sigma^2 \ell}
\]

Achievability: efficient adaptive scheme and inference achieves

\[
P_{\text{err}} \leq e^{-C \rho^2 \sigma^2 \ell}
\]

Fundamental limit: the best non-adaptive scheme is limited by

\[
\min_{\mathbb{E}, \hat{t}} \max_{q \in \mathcal{G}_{\rho^2}, p \in \mathcal{F}_{\sigma^2}} P_{\text{err}} \geq e^{-C'' (2q_{\text{min}} - 1)^2 \sigma^2 \ell}
\]
Iterative Algorithm

- **Message-passing algorithm**
 - Two sets of messages:
 - Task messages \(\{ T_{i \rightarrow j} \} \), and worker messages \(\{ W_{j \rightarrow i} \} \)
 - Initialize worker messages as random Gaussian: \(W_{j \rightarrow i} \sim \mathcal{N}(1, 1) \)
 - Iteratively update messages

 Task-likelihood update

 \[
 T_{i \rightarrow j} = \sum_{j' \neq j} W_{j' \rightarrow i} A_{ij'}
 \]

 Worker-reliability update

 \[
 W_{j \rightarrow i} = \sum_{i' \neq i} T_{i' \rightarrow j} A_{i'j}
 \]

- A task is likely to be ‘+’ if reliable workers agree that it is ‘+’
- A worker is reliable if the worker agreed with our belief on other tasks
1. DS model + non-adaptive scheme
1. DS model + non-adaptive scheme

\[P(T_{i \rightarrow j} | q_i = 0) \]

\[P(T_{i \rightarrow j} | q_i = 1) \]

\[T_{i \rightarrow j} = \sum A_{ik} W_{k \rightarrow i} \]
1. DS model + non-adaptive scheme

\[\mathbb{P}(T_{i \rightarrow j} | q_i = 0) \]

\[\mathbb{P}(T_{i \rightarrow j} | q_i = 1) \]
1. DS model + non-adaptive scheme

\[\mathbb{P}(T_{i \rightarrow j} | q_i = 0) \]

\[\mathbb{P}(T_{i \rightarrow j} | q_i = 1) \]

\[2q_i - 1 \]
1. DS model + non-adaptive scheme
1. DS model + non-adaptive scheme

\[P(T_{i \rightarrow j} | q_i = 0) \]

\[\hat{t}_i = -1 \quad \hat{t}_i = +1 \]

\[P(T_{i \rightarrow j} | q_i = 1) \]

\[P_{\text{err}} \leq e^{-C \sigma^2 \ell} \]
2. Generalized DS model + non-adaptive scheme
2. Generalized DS model + non-adaptive scheme
2. Generalized DS model + non-adaptive scheme

\[
\hat{t}_i = -1 \quad \hat{t}_i = +1
\]

\[
P(T_{i \rightarrow j} | q_i)
\]
2. Generalized DS model + non-adaptive scheme

\[\hat{t}_i = -1 \quad \hat{t}_i = +1 \]

\[\mathbb{P}(T_{i \rightarrow j} | q_i) \]

\[P_{err} \leq e^{-C(2q_{\min} - 1)^2 \sigma^2 \ell} \]
3. Generalized DS model + adaptive scheme

- Repeat rounds \(t \in \{1, 2, \ldots\} \)
 - Assign tasks with random \((\ell_t, r)\)-regular random graph
 - Run Iterative Algorithm
 - Classify high-confidence tasks with threshold \(\mathcal{X}_t \)
3. Generalized DS model + adaptive scheme

- Repeat rounds \(t \in \{1, 2, \ldots \} \)
 - Assign tasks with random \((\ell_t, r)\)-regular random graph
 - Run Iterative Algorithm
 - Classify high-confidence tasks with threshold \(X_t \)
3. Generalized DS model + adaptive scheme

- Repeat rounds $t \in \{1, 2, \ldots\}$
 - Assign tasks with random (ℓ_t, r)-regular random graph
 - Run **Iterative Algorithm**
 - Classify high-confidence tasks with threshold \mathcal{X}_t
3. Generalized DS model + adaptive scheme

Repeat rounds $t \in \{1, 2, \ldots\}$

- Assign tasks with random (ℓ_t, r)-regular random graph
- Run Iterative Algorithm
- Classify high-confidence tasks with threshold \mathcal{X}_t
3. Generalized DS model + adaptive scheme

- Repeat rounds $t \in \{1, 2, \ldots\}$
 - Assign tasks with random (ℓ_t, r)-regular random graph
 - Run Iterative Algorithm
 - Classify high-confidence tasks with threshold \mathcal{X}_t
3. Generalized DS model + adaptive scheme

Repeat rounds $t \in \{1, 2, \ldots\}$
- Assign tasks with random (ℓ_t, r)-regular random graph
- Run Iterative Algorithm
- Classify high-confidence tasks with threshold \mathcal{X}_t
3. Generalized DS model + adaptive scheme

- Repeat rounds $t \in \{1, 2, \ldots\}$
 - Assign tasks with random (ℓ_t, r)-regular random graph
 - Run Iterative Algorithm
 - classify high-confidence tasks with threshold \mathcal{X}_t
Where did this algorithm come from?

• Spectral method

\[
A = \begin{bmatrix}
+ & - & + & - \\
- & + & - & - \\
+ & - & + & - \\
- & - & - & - \\
\end{bmatrix}
\]

\[
\mathbb{E}[A|t, p] = \frac{\ell}{n} \cdot t \cdot (2p - 1)
\]

\[
\mathbb{E}[A|t] = \frac{\ell}{n} \cdot t \cdot (2p - 1)^T
\]

▶ Singular vector of a non-backtracking matrix (widely used in community detection [Mossel et al. ’13, Krzkala et al. ’13, Bordenave et al. ’14, Saade et al. ’15, etc.])

• Belief Propagation for approximating [Peng et al. 12]

\[
P(t_i|A)
\]
Recap

- Each worker with quality p_j

\[\sigma^2 = \frac{1}{n} \sum_{j=1}^{n} (2p_j - 1)^2 \]

\[P_{\text{err}} \propto e^{-C\sigma^2 \ell} \]

- Criticism: homogeneous tasks
- No gain in adaptivity
Recap

Dawid-Skene model

- Each worker with quality p_j
 \[
 \sigma^2 = \frac{1}{n} \sum_{j=1}^{n} (2p_j - 1)^2
 \]
 \[
 P_{\text{err}} \sim e^{-C\sigma^2\ell}
 \]

generalized Dawid-Skene

- Each task with difficulty q_i
 \[
 \rho^2 = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{(2q_i - 1)^2}
 \]
 \[
 P_{\text{err}} \sim e^{-C\rho^2\sigma^2\ell}
 \]

- Criticism: homogeneous tasks
- No gain in adaptivity

non-adaptive limit:

\[
P_{\text{err}} \sim e^{-C(2q_{\text{min}} - 1)^2\sigma^2\ell}
\]
What is the gain of knowing prior on p_j's: analysis of Belief Propagation.

![Graph showing the comparison between Majority Voting, Iterative Algo., and Lower Bound on probability of error as a function of the number of workers per task.](image)
Ongoing/future work

What is the gain of knowing prior on p_j's: analysis of Belief Propagation.

\[P_{err}^{BP} - P_{err}^{LB} \leq m^{-\gamma} \quad \text{for some } \gamma > 0 \]

[OkOhShinYi16]
Related work

- Crowdsourcing in machine learning
 - [ShengProvostIpeirotis2008] - first modern application of DS model
 - [WhitehillWuBergsmaMovellanRuvolo2009] - practical impact
 - [WelinderBransonPeronaBelongie2010] - practical impact
 - [GhoshKaleMcAfee2011] - weakness of analysis: $P_{\text{err}} \leq \frac{C}{\sigma^2 \ell}$

- Lots of recent advances following our initial work...
 - Spectral meets EM [ZhangChenZhouJordan2016]
 + generalized to k classes
 - assumes dense graph
 - open question: how to deal with sampling bias?
 - Permutation based model [ShahBalakrishnanWainwright2016]
 + introduce general model based on permutation
 - permutation model is only defined for binary classification
 - can only show a loose bound of $P_{\text{err}} \leq \frac{C}{\sigma^2 \ell}$
 - open question: what is the right model of human computation?
 - open question: how to model complex crowdsourcing tasks?
In this talk...
